Association of Obesity with Premenopausal Breast Cancer: Analyses on Molecular Subtypes Metabolic markers in BC

Matluba Mirzaeva (1), Bakhtiyar Iriskulov (2), Akmal Asrorov (3), Ilyos Hudoynazarov (4), Munira Norbekova (5), Rano Tadjibayeva (6), Akbar Mirzaev (7)
(1) Tashkent Medical Academy, Tashkent, Uzbekistan, Uzbekistan,
(2) Institute of Bioorganic Chemistry, Tashkent, Uzbekistan, Uzbekistan,
(3) Institute of Bioorganic Chemistry, Tashkent, Uzbekistan; Alfraganus University, Tashkent, Uzbekistan, Uzbekistan,
(4) Department of Natural compounds and applied Chemistry, National University of Uzbekistan, Tashkent , Uzbekistan, Uzbekistan,
(5) Tashkent Medical Academy, Tashkent, Uzbekistan, Uzbekistan,
(6) Central Asian University, Tashkent, Uzbekistan, Uzbekistan,
(7) Central Asian University, Tashkent, Uzbekistan, Uzbekistan

Abstract

Background: Breast cancer (BC) is a common disease among women.  Some scientific data claim the protective effect of obesity in premenopausal BC, whereas others do not agree. In this study, we studied the relationships between premenopausal BC and obesity by molecular subtypes.


Methods: We interviewed 74 women diagnosed with early and advanced stages of BC.  Interleukin-6 (IL-6), cancer antigen-15.3 (CA-15.3), and insulin were determined by immunoassay. Biochemical analyses were used to check serum levels of glucose and lipid profiles. Descriptive statistics, chi-square test, t-test, and ANOVA were used for statistical analysis.


Results: Our results suggested that obesity had a positive effect on the proliferative activity of the tumor (P = 0.001), tumor size (P = 0.001), and the state of progesterone hormone receptors (P = 0.013). Differences in lipid profile indicators were observed between patients with and without obesity, as well as between molecular subtypes (P < 0.05).  An increase in the level of IL-6, glucose, and HOMA-IR was observed in Luminal B and HER2/neu subtypes in obese. (P < 0.05). In triple-negative breast cancer (TNBC)  patients, only the glucose level was significantly associated with obesity (P < 0.05). A moderate inverse correlation was found between the CA 15-3 level and BMI (r = -0.40, P = 0.008).


Conclusion: We conclude the putative role of obesity in the development of BC and formed molecular subtypes in the premenopausal period. Metabolic monitoring, especially glucose and lipid profiles, is useful for premenopausal BC patients with obesity to evaluate risk for specific molecular subtypes.

Full text article

Generated from XML file

References

Mohanty SS, Mohanty PK. Obesity as potential breast cancer risk factor for postmenopausal women. Genes Dis. 2021;8(2):117-23. doi: 10.1016/j.gendis.2019.09.006

Minatoya M, Kutomi G, Asakura S, Otokozawa S, Sugiyama Y, Ohnishi H, et al. Relationship of serum isoflavone, insulin and adiponectin levels with breast cancer risk. Breast Cancer. 2015;22(5):452-61. doi: 10.1007/s12282-013-0502-2

Minatoya M, Kutomi G, Shima H, Asakura S, Otokozawa S, Ohnishi H, et al. Relation of serum adiponectin levels and obesity with breast cancer: a Japanese case-control study. Asian Pac J Cancer Prev. 2014;15(19):8325-30. doi: 10.7314/apjcp.2014.15.19.8325

Urbute A, Frederiksen K, Kjaer SK. Early adulthood overweight and obesity and risk of premenopausal ovarian cancer, and premenopausal breast cancer including receptor status: prospective cohort study of nearly 500,000 Danish women. Ann Epidemiol. 2022;70:61-7. doi: 10.1016/j.annepidem.2022.03.013

Mair KM, Gaw R, MacLean MR. Obesity, estrogens and adipose tissue dysfunction - implications for pulmonary arterial hypertension. Pulm Circ. 2020;10(3):2045894020952019. doi: 10.1177/2045894020952023

Kachhawa P, Kachhawa K, Agrawal D, Sinha V, Sarkar PD, Kumar S. Association of Dyslipidemia, Increased Insulin Resistance, and Serum CA 15-3 with Increased Risk of Breast Cancer in Urban Areas of North and Central India. J Midlife Health. 2018;9(2):85-91. doi: 10.4103/jmh.JMH_77_17

Szablewski L. Insulin Resistance: The Increased Risk of Cancers. Curr Oncol. 2024;31(2):998-1027. doi: 10.3390/curroncol31020075

Orgel E, Mittelman SD. The links between insulin resistance, diabetes, and cancer. Curr Diab Rep. 2013;13(2):213-22. doi: 10.1007/s11892-012-0356-6

Amadou A, Hainaut P, Romieu I. Role of obesity in the risk of breast cancer: lessons from anthropometry. J Oncol. 2013;2013:906495. doi: 10.1155/2013/906495

Bononi G, Masoni S, Di Bussolo V, Tuccinardi T, Granchi C, Minutolo F. Historical perspective of tumor glycolysis: A century with Otto Warburg. Semin Cancer Biol. 2022;86(Pt 2):325-33. doi: 10.1016/j.semcancer.2022.07.003

Hasan N, Yazdanpanah O, Khaleghi B, Benjamin DJ, Kalebasty AR. The role of dietary sugars in cancer risk: A comprehensive review of current evidence. Cancer Treatment and Research Communications. 2024;43:100876. doi: 10.1016/j.ctarc.2025.100876

Gonullu G, Ersoy C, Ersoy A, Evrensel T, Basturk B, Kurt E, et al. Relation between insulin resistance and serum concentrations of IL-6 and TNF-alpha in overweight or obese women with early stage breast cancer. Cytokine. 2005;31(4):264-9. doi: 10.1016/j.cyto.2005.05.003

Timper K, Denson JL, Steculorum SM, Heilinger C, Engström-Ruud L, Wunderlich CM, et al. IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling. Cell Rep. 2017;19(2):267-80. doi: 10.1016/j.celrep.2017.03.043

Chen J, Wei Y, Yang W, Huang Q, Chen Y, Zeng K, et al. IL-6: The Link Between Inflammation, Immunity and Breast Cancer. Front Oncol. 2022;12:903800. doi: 10.3389/fonc.2022.903800

Ravishankaran P, Karunanithi R. Clinical significance of preoperative serum interleukin-6 and C-reactive protein level in breast cancer patients. World J Surg Oncol. 2011;9:18. doi: 10.1186/1477-7819-9-18

Mirzaeva M, Iriskulov B, Alimkhodjaeva L. Potential of Serum IL-6 as a Predictor of Tumоr Histоlоgiсаl Mаnifеstаtiоns in Prеmеnораusаl Brеаst Cаnсеr with Mеtаbоliс Sуndrоmе: IL6 as a tumor predictor. Archives of Breast Cancer. 2024;11(4). doi: 10.32768/abc.2024114337-344

Nelson ER, Chang CY, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol Metab. 2014;25(12):649-55. doi: 10.1016/j.tem.2014.10.001

Park JW, Han K, Shin DW, Yeo Y, Chang JW, Yoo JE, et al. Obesity and breast cancer risk for pre- and postmenopausal women among over 6 million Korean women. Breast Cancer Res Treat. 2021;185(2):495-506. doi: 10.1007/s10549-020-05952-4

Li M, Song L, Yuan J, Zhang D, Zhang C, Liu Y, et al. Association Between Serum Insulin and C-Peptide Levels and Breast Cancer: An Updated Systematic Review and Meta-Analysis. Front Oncol. 2020;10:553332. doi: 10.3389/fonc.2020.553332

Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929-43.

Liu K, Zhang W, Dai Z, Wang M, Tian T, Liu X, et al. Association between body mass index and breast cancer risk: evidence based on a dose-response meta-analysis. Cancer Manag Res. 2018;10:143-51. doi: 10.2147/cmar.S144619

Mezghani N, Ammar A, Boukhris O, Abid R, Hadadi A, Alzahrani TM, et al. The Impact of Exercise Training Intensity on Physiological Adaptations and Insulin Resistance in Women with Abdominal Obesity. Healthcare (Basel). 2022;10(12). doi: 10.3390/healthcare10122533

Chan DS, Norat T. Obesity and breast cancer: not only a risk factor of the disease. Curr Treat Options Oncol. 2015;16(5):22. doi: 10.1007/s11864-015-0341-9

Pan K, Chlebowski RT, Mortimer JE, Gunter MJ, Rohan T, Vitolins MZ, et al. Insulin resistance and breast cancer incidence and mortality in postmenopausal women in the Women's Health Initiative. Cancer. 2020;126(16):3638-47. doi: 10.1002/cncr.33002

Devic S. Warburg Effect - a Consequence or the Cause of Carcinogenesis? J Cancer. 2016;7(7):817-22. doi: 10.7150/jca.14274

Yee LD, Mortimer JE, Natarajan R, Dietze EC, Seewaldt VL. Metabolic Health, Insulin, and Breast Cancer: Why Oncologists Should Care About Insulin. Front Endocrinol (Lausanne). 2020;11:58. doi: 10.3389/fendo.2020.00058

Ryu JM, Kang D, Cho J, Lee JE, Kim SW, Nam SJ, et al. Prognostic Impact of Elevation of Cancer Antigen 15-3 (CA15-3) in Patients With Early Breast Cancer With Normal Serum CA15-3 Level. J Breast Cancer. 2023;26(2):126-35. doi: 10.4048/jbc.2023.26.e17

Harris HR, Willett WC, Terry KL, Michels KB. Body fat distribution and risk of premenopausal breast cancer in the Nurses' Health Study II. J Natl Cancer Inst. 2011;103(3):273-8. doi: 10.1093/jnci/djq500

Bjelland EK, Hofvind S, Byberg L, Eskild A. The relation of age at menarche with age at natural menopause: a population study of 336 788 women in Norway. Hum Reprod. 2018;33(6):1149-57. doi: 10.1093/humrep/dey078

Xu S, Murtagh S, Han Y, Wan F, Toriola AT. Breast Cancer Incidence Among US Women Aged 20 to 49 Years by Race, Stage, and Hormone Receptor Status. JAMA Netw Open. 2024;7(1):e2353331. doi: 10.1001/jamanetworkopen.2023.53331

Cattie R, Chung V, Henry M, Alberti M, Peeples J, Yuan H, et al. Obesity and breast cancer in women under age 40. 2023;41(16_suppl):10536-. doi: 10.1200/JCO.2023.41.16_suppl.10536

Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, O'Brien KM, et al. Association of Body Mass Index and Age With Subsequent Breast Cancer Risk in Premenopausal Women. JAMA Oncol. 2018;4(11):e181771. doi: 10.1001/jamaoncol.2018.1771

Torres-de la Roche LA, Steljes I, Janni W, Friedl TWP, De Wilde RL. The Association between Obesity and Premenopausal Breast Cancer According to Intrinsic Subtypes - a Systematic Review. Geburtshilfe Frauenheilkd. 2020;80(6):601-10. doi: 10.1055/a-1170-5004

Daling JR, Malone KE, Doody DR, Johnson LG, Gralow JR, Porter PL. Relation of body mass index to tumor markers and survival among young women with invasive ductal breast carcinoma. Cancer. 2001;92(4):720-9. doi: 10.1002/1097-0142(20010815)92:4<720::aid-cncr1375>3.0.co;2-t

Proskuriakova E, Aryal BB, Shrestha DB, Valencia S, Kovalenko I, Adams M, et al. Impact of Obesity on Breast Cancer Clinicopathological Characteristics in Underserved US Community Safety-Net Hospital: A Retrospective Single-Center Study. Clinical Breast Cancer. 2024;24(8):e714-e22. doi: 10.1016/j.clbc.2024.08.008

Yang XR, Chang-Claude J, Goode EL, Couch FJ, Nevanlinna H, Milne RL, et al. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst. 2011;103(3):250-63. doi: 10.1093/jnci/djq526

Nouri M, Mohsenpour MA, Katsiki N, Ghobadi S, Jafari A, Faghih S, et al. Effect of Serum Lipid Profile on the Risk of Breast Cancer: Systematic Review and Meta-Analysis of 1,628,871 Women. J Clin Med. 2022;11(15). doi: 10.3390/jcm11154503

Gupta A, Saraiya V, Deveaux A, Oyekunle T, Jackson KD, Salako O, et al. Association of lipid profile biomarkers with breast cancer by molecular subtype: analysis of the MEND study. Sci Rep. 2022;12(1):10631. doi: 10.1038/s41598-022-13740-x

Asrorov AM, Gu Z, Li F, Liu L, Huang Y. Biomimetic camouflage delivery strategies for cancer therapy. Nanoscale. 2021;13(19):8693-706. doi: 10.1039/d1nr01127h

Brody TOM. 6 - LIPIDS. In: Brody TOM, editor. Nutritional Biochemistry (Second Edition). San Diego: Academic Press; 1999. p. 311-78.

Dong S, Yu J, Chen X, Shen K. Association of serum lipid levels and clinical outcomes in early breast cancer patients. Ther Adv Med Oncol. 2023;15:17588359231177004. doi: 10.1177/17588359231177004

Li X, Liu ZL, Wu YT, Wu H, Dai W, Arshad B, et al. Status of lipid and lipoprotein in female breast cancer patients at initial diagnosis and during chemotherapy. Lipids Health Dis. 2018;17(1):91. doi: 10.1186/s12944-018-0745-1

Bicakli DH, Varol U, Degirmenci M, Tunali D, Cakar B, Durusoy R, et al. Adjuvant chemotherapy may contribute to an increased risk for metabolic syndrome in patients with breast cancer. J Oncol Pharm Pract. 2016;22(1):46-53. doi: 10.1177/1078155214551315

Shen J, Hernandez D, Ye Y, Wu X, Chow WH, Zhao H. Metabolic hormones and breast cancer risk among Mexican American Women in the Mano a Mano Cohort Study. Sci Rep. 2019;9(1):9989. doi: 10.1038/s41598-019-46429-9

Pan K, Chlebowski RT, Mortimer JE, Gunther MJ, Rohan T, Vitolins MZ, et al. Insulin resistance and breast cancer incidence and mortality in postmenopausal women in the Women’s Health Initiative. 2020;126(16):3638-47. doi: 10.1002/cncr.33002

Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, et al. Fasting Insulin and Outcome in Early-Stage Breast Cancer: Results of a Prospective Cohort Study. 2002;20(1):42-51. doi: 10.1200/jco.2002.20.1.42

Monteiro M, Zhang X, Yee D. Insulin promotes growth in breast cancer cells through the type I IGF receptor in insulin receptor deficient cells. Exp Cell Res. 2024;434(1):113862. doi: 10.1016/j.yexcr.2023.113862

Epner M, Yang P, Wagner RW, Cohen L. Understanding the Link between Sugar and Cancer: An Examination of the Preclinical and Clinical Evidence. Cancers (Basel). 2022;14(24). doi: 10.3390/cancers14246042

Chazelas E, Srour B, Desmetz E, Kesse-Guyot E, Julia C, Deschamps V, et al. Sugary drink consumption and risk of cancer: results from NutriNet-Santé prospective cohort. Bmj. 2019;366:l2408. doi: 10.1136/bmj.l2408

Potischman N, Coates RJ, Swanson CA, Carroll RJ, Daling JR, Brogan DR, et al. Increased risk of early-stage breast cancer related to consumption of sweet foods among women less than age 45 in the United States. Cancer Causes Control. 2002;13(10):937-46. doi: 10.1023/a:1021919416101

Mink PJ, Shahar E, Rosamond WD, Alberg AJ, Folsom AR. Serum Insulin and Glucose Levels and Breast Cancer Incidence: The Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2002;156(4):349-52. doi: 10.1093/aje/kwf050

Strober JW, Brady MJ. Dietary Fructose Consumption and Triple-Negative Breast Cancer Incidence. Front Endocrinol (Lausanne). 2019;10:367. doi: 10.3389/fendo.2019.00367

Noman AS, Uddin M, Chowdhury AA, Nayeem MJ, Raihan Z, Rashid MI, et al. Serum sonic hedgehog (SHH) and interleukin-(IL-6) as dual prognostic biomarkers in progressive metastatic breast cancer. Scientific Reports. 2017;7(1):1796. doi: 10.1038/s41598-017-01268-4

Bachelot T, Ray-Coquard I, Menetrier-Caux C, Rastkha M, Duc A, Blay JY. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br J Cancer. 2003;88(11):1721-6. doi: 10.1038/sj.bjc.6600956

Bun A, Nagahashi M, Kuroiwa M, Komatsu M, Miyoshi Y. Baseline interleukin-6 is a prognostic factor for patients with metastatic breast cancer treated with eribulin. Breast Cancer Research and Treatment. 2023;202(3):575-83. doi: 10.1007/s10549-023-07086-9

Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, et al. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer. 2003;103(5):642-6. doi: 10.1002/ijc.10833

Milovanović J, Todorović-Raković N, Radulovic M. Interleukin-6 and interleukin-8 serum levels in prognosis of hormone-dependent breast cancer. Cytokine. 2019;118:93-8. doi: 10.1016/j.cyto.2018.02.019

Ravishankaran P, Karunanithi R. Clinical significance of preoperative serum interleukin-6 and C-reactive protein level in breast cancer patients. World Journal of Surgical Oncology. 2011;9(1):18. doi: 10.1186/1477-7819-9-18

Hasan D. Diagnostic impact of CEA and CA 15-3 on chemotherapy monitoring of breast cancer patients. J Circ Biomark. 2022;11:57-63. doi: 10.33393/jcb.2022.2446

Darlix A, Lamy PJ, Lopez-Crapez E, Braccini AL, Firmin N, Romieu G, et al. Serum HER2 extra-cellular domain, S100ß and CA 15-3 levels are independent prognostic factors in metastatic breast cancer patients. BMC Cancer. 2016;16:428. doi: 10.1186/s12885-016-2448-1

De Cock L, Heylen J, Wildiers A, Punie K, Smeets A, Weltens C, et al. Detection of secondary metastatic breast cancer by measurement of plasma CA 15.3. ESMO Open. 2021;6(4). doi: 10.1016/j.esmoop.2021.100203

Di Gioia D, Dresse M, Mayr D, Nagel D, Heinemann V, Stieber P. Serum HER2 in combination with CA 15-3 as a parameter for prognosis in patients with early breast cancer. Clin Chim Acta. 2015;440:16-22. doi: 10.1016/j.cca.2014.11.001

Santillán-Benítez JG, Mendieta-Zerón H, Gómez-Oliván LM, Torres-Juárez JJ, González-Bañales JM, Hernández-Peña LV, et al. The tetrad BMI, leptin, leptin/adiponectin (L/A) ratio and CA 15-3 are reliable biomarkers of breast cancer. J Clin Lab Anal. 2013;27(1):12-20. doi: 10.1002/jcla.21555

Provatopoulou X, Georgiou GP, Kalogera E, Kalles V, Matiatou MA, Papapanagiotou I, et al. Serum irisin levels are lower in patients with breast cancer: association with disease diagnosis and tumor characteristics. BMC Cancer. 2015;15:898. doi: 10.1186/s12885-015-1898-1

Grubb RL, 3rd, Black A, Izmirlian G, Hickey TP, Pinsky PF, Mabie JE, et al. Serum prostate-specific antigen hemodilution among obese men undergoing screening in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cancer Epidemiol Biomarkers Prev. 2009;18(3):748-51. doi: 10.1158/1055-9965.Epi-08-0938

Menikdiwela KR, Kahathuduwa C, Bolner ML, Rahman RL, Moustaid-Moussa N. Association between Obesity, Race or Ethnicity, and Luminal Subtypes of Breast Cancer. Biomedicines. 2022;10(11). doi: 10.3390/biomedicines10112931

Sahin S, Erdem GU, Karatas F, Aytekin A, Sever AR, Ozisik Y, et al. The association between body mass index and immunohistochemical subtypes in breast cancer. Breast. 2017;32:227-36. doi: 10.1016/j.breast.2016.09.019

Govind Babu K, Anand A, Lakshmaiah KC, Lokanatha D, Jacob LA, Suresh Babu MC, et al. Correlation of BMI with breast cancer subtype and tumour size. Ecancermedicalscience. 2018;12:845. doi: 10.3332/ecancer.2018.845

Authors

Matluba Mirzaeva
matluba.mirzayeva@mail.ru (Primary Contact)
Bakhtiyar Iriskulov
Akmal Asrorov
Ilyos Hudoynazarov
Munira Norbekova
Rano Tadjibayeva
Akbar Mirzaev
1.
Mirzaeva M, Iriskulov B, Asrorov A, Hudoynazarov I, Norbekova M, Tadjibayeva R, Mirzaev A. Association of Obesity with Premenopausal Breast Cancer: Analyses on Molecular Subtypes: Metabolic markers in BC. Arch Breast Cancer [Internet]. [cited 2025 Aug. 25];12(4). Available from: https://www.archbreastcancer.com/index.php/abc/article/view/1134

Article Details