Clitoria Ternatea Floral Mediated Synthesis, Characterization, Antioxidant, and Cytotoxicity Evaluation of Silver Nanoparticles Clitoria ternatea floral mediated SNP to control BC

Hariharan Madhumitha (1), Soundhararajan Ranjani (2), Jenin Ravindranath Karunyaa (3), Srinivasan Hemalatha (4)
(1) School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamilnadu, India, India,
(2) School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamilnadu, India, India,
(3) School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamilnadu, India, India,
(4) School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamilnadu, India, India

Abstract

Background: Green silver nanoparticles offer a reliable and secure alternative to drugs and prevent cancer. The floral part of Clitoria ternatea is traditionally well known for its application as a medicine and food in various cultures around the world. Phytochemicals of these floral extracts are enriched with various properties. Floral extracts can be utilized as an alternative that can target the proteins and other molecules involved in the progression of cancer.


Methods: Silver nanoparticles (CT-AgNPs) were synthesized from the extracts of blue flowers of Clitoria ternatea (CT). The synthesized CT-AgNPs were characterized by various physicochemical methods that revealed the size, shape, and stability of the nanoparticles. Docking was performed between the phytocompounds of Clitoria ternatea and apoptotic proteins involved in breast cancer such as APAF-1, BCL-2, and BAX, to determine the ability of phytocompounds present in the floral extract to control breast cancer by binding with the targets.


Results: Based on the docking results, the binding energies were ranging from -6.2 Kcal/mol to -7 Kcal/mol with Quercetin having the highest binding energies. Toxicity analysis of CT-AgNPs in Artermia nauplii and Vigna radiata seedlings confirmed that these nanoparticles were not toxic to both the model systems. Free radical scavenging activity assay revealed the antioxidant nature of CT-AgNPs were similar to that of standard ascorbic acid. In vitro cytotoxicity analysis by using MCF-7 breast cancer cell lines revealed that CT-AgNPs were cytotoxic.


Conclusion: In vitro antioxidant and cytotoxicity analysis by using MCF-7 breast cancer cell lines revealed that CT-AgNPs were potent antioxidant and cytotoxic, correlating with the results of in silico analysis and hence demonstrating the anticancer potential of Clitoria ternatea floral mediated nanoparticles.

Full text article

Generated from XML file

References

Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press). 2019;11:151-164. 2019. doi: 10.2147/BCTT.S176070

Kumar SA, Mohaideen NSMH, S H. Phytocompounds From Edible Oil Seeds Target Hub Genes To Control Breast Cancer. Appl Biochem Biotechnol. 2023 Feb;195(2):1231-1254. doi: 10.1007/s12010-022-04224-9.

Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017 Jan;17(1):20-37. doi: 10.1038/nrc.2016.108.

Jin C, Wang K, Oppong-Gyebi A, Hu J. Application of Nanotechnology in Cancer Diagnosis and Therapy - A Mini-Review. Int J Med Sci. 2020;17(18):2964-2973. 2020 Oct 18. doi: 10.7150/ijms.49801.

Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine. 2017 16;12:5879-5892. doi: 10.2147/IJN.S123437.

Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996-9031. 2020. doi: 10.7150/thno.45413

Kovács D, Igaz N, Gopisetty MK, Kiricsi M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality?. Int J Mol Sci. 2022;23(2):839. 2022. doi: 10.3390/ijms23020839

Oguis GK, Gilding EK, Jackson MA, Craik DJ. Butterfly Pea (Clitoria ternatea), a Cyclotide-Bearing Plant With Applications in Agriculture and Medicine. Front Plant Sci. 2019;10:645. 2019. doi: 10.3389/fpls.2019.00645.

Jeyaraj EJ, Lim YY, Choo WS. Extraction methods of butterfly pea (Clitoria ternatea) flower and biological activities of its phytochemicals. J Food Sci Technol. 2021;58(6):2054-2067. doi: 10.1007/s13197-020-04745-3.

Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001). doi: 10.1038/35051606.

Radha G, Raghavan SC. BCL2: A promising cancer therapeutic target. Biochim Biophys Acta Rev Cancer. 2017 Aug;1868(1):309-314. doi: 10.1016/j.bbcan.2017.06.004.

Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J. Direct Activation of Bax Protein for Cancer Therapy. Med Res Rev. 2016 Mar;36(2):313-41. doi: 10.1002/med.21379.

Ravindranath KJ, Christian SD, Srinivasan H. Screening of Anti-carcinogenic Properties of Phytocompounds from Allium ascalonicum for Treating Breast Cancer Through In Silico and In Vitro Approaches. Appl Biochem Biotechnol. 2023 Feb;195(2):1136-1157. doi: 10.1007/s12010-022-04202-1.

Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's Mechanistic and Clinical Effects on Breast Cancer. Biomolecules. 2019 Nov 27;9(12):789. doi: 10.3390/biom9120789.

Ravindranath KJ, Mohaideen NSMH, Srinivasan H. Phytocompounds of Onion Target Heat Shock Proteins (HSP70s) to Control Breast Cancer Malignancy. Appl Biochem Biotechnol. 2022 Oct;194(10):4836-4851. doi: 10.1007/s12010-022-04016-1.

Juzer T, Ranjani S, Hemalatha S. Camellia sinensis mediated synthesis and characterization of nanoparticles and applications to control Gram-negative ESBL producing antibiotic resistant bacterial pathogens. Food Bioscience. 2020. Volume 50, Part A, 102070. doi:10.1016/j.fbio.2022.102070.

Janarthanan S, Ranjani S, Hemalatha S. Myconanoparticles Break Antibiotic Resistance in Staphylococcus aureus and Acinetobacter baumannii. Appl Biochem Biotechnol. 2022;10.1007/s12010-022-04125-x. doi:10.1007/s12010-022-04125-x

Mendie EL, Hemalatha S. Molecular Docking of Phytochemicals Targeting GFRs as Therapeutic Sites for Cancer: an In Silico Study. Applied Biochemistry and Biotechnology. 2022. 194. 1-17. doi: 10.1007/s12010-021-03791-7.

Charlz Nithin J, Ranjani S, Hemalatha S. Mimusops elengi Flower-Mediated Green Silver Nanoparticles Control Staphylococcus aureus and Acinetobacter baumannii. Appl Biochem Biotechnol. 2022;194(7):3066-3081. doi:10.1007/s12010-022-03882-z.

Architha V, Ranjani S, Hemalatha S. Engineered green nanoparticles interact with Nigrospora oryzae isolated from infected leaves of Arachis hypogaea, Journal of Basic Microbiology, 2022. doi:10.1002/jobm.202100623.

Jenish A, Ranjani S, Hemalatha S. Moringa oleifera Nanoparticles Demonstrate Antifungal Activity against Plant Pathogenic Fungi. Applied biochemistry and biotechnology. 2022. 194(10), 4959–4970. doi:10.1007/s12010-022-04007-2.

Sai Nivetha S, Ranjani S, Hemalatha S. Synthesis and application of silver nanoparticles using Cissus quadrangularis. 2022. Inorg. Nano-Met. Chem 52:1, 82-89, doi: 10.1080/24701556.2020.1862219.

Ranjani S, Hemalatha S. Triphala decorated multipotent green nanoparticles and its applications. Materials Letters. 2022. doi: 10.1016/j.matlet.2021.131184.

Ranjani S, Faridha Begum I, Santhoshini J, Senthil Kumar N, Ruckmani K, Hemalatha S. Mimosa pudica floral nanoparticles: a potent antibiotic resistance breaker. 2021. Inorg. Nano-Met. Chem. 51:12, 1751-1758. doi: 10.1080/24701556.2020.1852429.

Ranjani S, Mohamed Sheik Meeran S, Prakash SP, Mohammad W, Kandasamy R, Hemalatha S. Multi potent aromatic nano colloid: synthesis, characterization and applications. 2020. AMB Express, 10(1), 168. doi:10.1186/s13568-020-01104-5.

Janarthanan S, Ranjani S, Hemalatha S. Myconanoparticles Break Antibiotic Resistance in Staphylococcus aureus and Acinetobacter baumannii. 2022. Appl Biochem Biotechnol. doi: 10.1007/s12010-022-04125-x.

Ranjani S, Shariq Ahmed M, MubarakAli D, Ramachandran C, Senthil Kumar N, Hemalatha S. Toxicity assessment of silver nanoparticles synthesized using endophytic fungi against nosacomial infection. 2021. Inorg. Nano-Met. Chem, 51:8, 1080-1085. doi: 10.1080/24701556.2020.1814332.

Ranjani S, Noorul Samsoon Maharifa H, Raihanathus Sahdhiyya A, Hemalatha S. Phytotoxicity assessment of synthesized green nanosuspension on germination and growth in Vigna radiate. 2021. Inorganic and Nano-Metal Chemistry. doi: 10.1080/24701556.2021.1993916

Ranjani S, Hemalatha S. Triphala decorated multipotent green nanoparticles and its applications, Materials Letters. 2022. doi: 10.1016/j.matlet.2021.131184.

Ranjani S, Shariq Ahmed M, Ruckmani K, Hemalatha S, Green Nanocolloids Control Multi Drug Resistant Pathogenic Bacteria. Journal of Cluster Science. 2019, doi:10.1007/s10876-019-01694-6.

Pehlivan, Fadime Eryılmaz. ‘Vitamin C: An Antioxidant Agent’. Vitamin C, InTech, 2. 2017. Crossref, doi: 10.5772/intechopen.69660.

Jaafar NF, Ramli ME, Mohd Salleh R. Optimum Extraction Condition of Clitorea ternatea Flower on Antioxidant Activities, Total Phenolic, Total Flavonoid and Total Anthocyanin Contents. Trop Life Sci Res. 2020;31(2):1-17. doi: 10.21315/tlsr2020.31.2.1

Duangruedee K, Rasimate M, Parawee R, Green synthesis of silver nanoparticles using Clitoria ternatea flower: an efficient catalyst for removal of methyl orange. 2020. International Journal of Environmental Analytical Chemistry. doi: 10.1080/03067319.2020.1793974.

Lamson DW, Brignall MS. Antioxidants in cancer therapy; their actions and interactions with oncologic therapies. Altern Med Rev. 1999 Oct;4(5):304-29.

Gurunathan S, Kang MH, Kim JH. Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells. Molecules. 2018;23(8):2046. doi: 10.3390/molecules23082046.

Alahmdi M, Khasim S, Sekar V, Panneerselvam C. Green Nanoarchitectonics of ZnO Nanoparticles from Clitoria ternatea Flower Extract for In Vitro Anticancer and Antibacterial Activity: Inhibits MCF-7 Cell Proliferation via Intrinsic Apoptotic Pathway, Journal of Inorganic and Organometallic Polymers and Materials. doi: 10.1007/s10904-022-02263-7.

Ismail A, Ahmed MM, Salem A. Biosynthesis of Silver Nanoparticles Using Mushroom Extracts: Induction of Apoptosis in HepG2 and MCF-7 Cells via Caspases Stimulation and Regulation of BAX and Bcl-2 Gene Expressions, Pharm Biomed Sci. 5(1)1-9, 2015.

Arpudhamary V, Priya S, Manzoor MAP, Mubarakali D, Hemalatha S. Apoptotic-inducing factor 1 (AIF1) plays a critical role in cembranoid mediated apoptosis to control cancer: Molecular docking and dynamics study. 2019. Biocatalysis and Agricultural Biotechnology. doi: 10.1016/j.bcab.2019.101343.

Authors

Hariharan Madhumitha
Soundhararajan Ranjani
Jenin Ravindranath Karunyaa
Srinivasan Hemalatha
hemalatha.sls@bsauniv.ac.in (Primary Contact)
1.
Madhumitha H, Ranjani S, Karunyaa JR, Hemalatha S. Clitoria Ternatea Floral Mediated Synthesis, Characterization, Antioxidant, and Cytotoxicity Evaluation of Silver Nanoparticles: Clitoria ternatea floral mediated SNP to control BC. Arch Breast Cancer [Internet]. 2023 May 1 [cited 2024 Apr. 22];10(3):222-31. Available from: https://www.archbreastcancer.com/index.php/abc/article/view/655

Article Details