Targeting Mitochondrial-Nuclear Apoptotic Signaling Pathways, Metabolic Pathways and Reversal of Doxorubicin (DOX) Cell Resistance in MCF-7 and MDA‑MB-231 Cancer Cell Lines by Sambucus Nigra (SNA)

Main Article Content

Ali Ghanbari
Shiva Roshankhah
Mohammad Reza Salahshoor
Cyrus Jalili
Mojtaba Esmaeli


Breast cancer, Doxorubicin, Drug resistance, Sambucus nigra


Background: The study aimed to assess the effect of anti-tumor and anti-proliferative properties of Sambucus nigra (SNA) on MCF-7 and MDA MB-231 breast tumor cell lines.
Methods: The cytotoxicity of SNA was assessed based on dose/time by the MTT assay. Also, the influence of SNA on apoptotic pathways, cellular and metabolic resistance in these cell lines was examined by real-time PCR, lipid peroxidase was measured by malondialdehyde (MDA) and the effect of apoptosis and necrosis was determined by flow cytometry.
Results: Our data showed that DOX, SNA, and DOX + SNA treatment induced the expression of p53, Bax, Bcl-2, Caspase-3, and 8 levels involved in the apoptotic pathways. ATP binding cassette subfamily B member 4 (ABCB4) gene expression was decreased in MDA‑MB-231 breast cancer cells compared to MCF-7. Also, we observed that DOX, SNA, and DOX + SNA treatment induced expression of Monocarboxylate transporters (MCTs) metabolic pathways such as MCT1 and MCT4.
Conclusion: Overall, the outcomes of this investigation show that the combination of SNA-Doxorubicin (DOX) in different groups of these cancer cells, especially in the MDA‑MB-231 cell lines synergistically intensified the induction of apoptosis in them. SNA enhances the anti-cancer effects of DOX to induce cellular apoptosis, alter metabolic pathways, and reduce cellular resistance. The research highlights the promising use of SNA as a chemosensitizer in the chemotherapy.


1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6):394-424. doi: 10.3322/caac.21609.
2. Williams DH. Fertility preservation in the male with cancer. Current urology reports. 2013;14(4):315-26. doi: 10.1007/s11934-013-0345-6.
3. Liu B, Zhang X, Li C, He F, Chen Y, Huang S, et al. Magnetically targeted delivery of DOX loaded Cu 9 S [email protected] mSiO [email protected] Fe 3 O 4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy. Nanoscale. 2016;8(25):12560-9.
doi: 10.1039/C5NR06322A.
4. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer. 2013;13(10):714-26. doi: 10.1038/nrc3599 .
5. Dayton A, Selvendiran K, Meduru S, Khan M, Kuppusamy ML, Naidu S, et al. Amelioration of doxorubicin-induced cardiotoxicity by an anticancer-antioxidant dual-function compound, HO-3867. Journal of Pharmacology and Experimental Therapeutics. 2011;339(2):350-7. doi: 10.1124/jpet.111.183681.
6. Randall ME, Filiaci VL, Muss H, Spirtos NM, Mannel RS, Fowler J, et al. Randomized phase III trial of whole-abdominal irradiation versus doxorubicin and cisplatin chemotherapy in advanced endometrial carcinoma: a Gynecologic Oncology Group Study. Journal of clinical oncology. 2006;24(1):36-44. doi:10.3410/f.14006.471513.
7. Thigpen JT, Brady MF, Homesley HD, Malfetano J, DuBeshter B, Burger RA, et al. Phase III trial of doxorubicin with or without cisplatin in advanced endometrial carcinoma: a gynecologic oncology group study. Journal of clinical oncology. 2004;22(19):3902-8. doi:10.1200/JCO.2004.02.088.
8. Miles D, von Minckwitz G, Seidman AD. Combination versus sequential single‐agent therapy in metastatic breast cancer. The oncologist. 2002;7:13-9. doi:10.1634/theoncologist.2002-0013
9. Lee JH, Nan A. Combination drug delivery approaches in metastatic breast cancer. Journal of drug delivery. 2012;2012. doi: 10.1155/2012/915375.
10. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022. doi: 10.18632/oncotarget.16723.
11. Moyad MA, Carroll PR. Lifestyle recommendations to prevent prostate cancer, part I: time to redirect our attention? Urologic Clinics. 2004;31(2):289-300. doi: 10.1016/j.ucl.2004.03.006.
12. Kruk J. Physical activity in the prevention of the most frequent chronic diseases: an analysis of the recent evidence. Asian Pacific Journal of Cancer Prevention. 2007;8(3):325. doi: Not Available.
13. Dossus L, Kaaks R. Nutrition, metabolic factors and cancer risk. Best practice & research clinical endocrinology & metabolism. 2008;22(4):551-71. doi: 10.1016/j.beem.2008.08.003.
14. Naji Reyhani Garmroudi S, Karimi E, Oskoueian E, Homayouni‐Tabrizi M, Iranshahi M. Ferutinin: A phytoestrogen from ferula and its anticancer, antioxidant, and toxicity properties. Journal of biochemical and molecular toxicology. 2021;35(4):e22713. doi: 10.1002/jbt.22713.
15. Zarei M, Karimi E, Oskoueian E, Es-Haghi A, Yazdi MET. Comparative study on the biological effects of sodium citrate-based and apigenin-based synthesized silver nanoparticles. Nutrition and cancer. 2021;73(8):1511-9. doi: 10.1080/01635581.2020.1801780.
16. Sidor A, Gramza-Michałowska A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food–a review. Journal of Functional Foods. 2015;18:941-58. doi: 10.1016/j.jff.2014.07.012.
17. Ebrahimzadeh MA, Mahmoudi M, Karami M, Saeedi S, Ahmadi AH, Salimi E. Separation of active and toxic portions in Sambucus ebulus. Pakistan journal of biological sciences: PJBS. 2007;10(22):4171-3. doi: 10.3923/pjbs.2007.4171.4173.
18. Jiménez P, Tejero J, Cordoba-Diaz D, Quinto EJ, Garrosa M, Gayoso MJ, et al. Ebulin from dwarf elder (Sambucus ebulus L.): a mini-review. Toxins. 2015;7(3):648-58. doi: 10.3390/toxins7030648.
19. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Todorovic B, Veberic R, Stampar F, et al. Investigation of anthocyanin profile of four elderberry species and interspecific hybrids. Journal of Agricultural and Food chemistry. 2014;62(24):5573-80. doi: 10.1021/jf5011947.
20. Ding M, Feng R, Wang SY, Bowman L, Lu Y, Qian Y, et al. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. Journal of Biological Chemistry. 2006;281(25):17359-68.doi: 10.1074/jbc.M600861200.
21. Kiselova Y, Ivanova D, Chervenkov T, Gerova D, Galunska B, Yankova T. Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2006;20(11):961-5. doi: 10.1002/ptr.1985..
22. Ebrahimzadeh MA, Enayatifard R, Khalili M, Ghaffarloo M, Saeedi M, Charati JY. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iranian journal of pharmaceutical research: IJPR. 2014;13(3):1041.
23. Saravi SS, Shokrzadeh M, Shirazi FH. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective effects of vitamins C and E against its cytotoxicity on normal cell lines. African Journal of Biotechnology. 2013;12(21).doi: 10.5897/AJB09.1577.
24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402-8. doi:10.1006/ meth.2001.1262.
25. Sung J-M, Cho H-J, Yi H, Lee C-H, Kim H-S, Kim D-K, et al. Characterization of a stem cell population in lung cancer A549 cells. Biochemical and biophysical research communications. 2008;371(1):163-7. doi:10.1016/j.bbrc.2008.04.038.
26. Schuurhuis G, Broxterman H, De Lange J, Pinedo H, Van Heijningen T, Kuiper C, et al. Early multidrug resistance, defined by changes in intracellular doxorubicin distribution, independent of P-glycoprotein. British journal of cancer. 1991;64(5):857-61. doi: 10.1038/bjc.1991.413.
27. Sung J-M, Cho H-J, Yi H, Lee C-H, Kim H-S, Kim D-K, et al. Characterization of a stem cell population in lung cancer A549 cells. Biochemical and biophysical research communications. 2008;371(1):163-7. doi: 10.1016/j.bbrc.2008.04.038
28. Thole JM, Kraft TFB, Sueiro LA, Kang Y-H, Gills JJ, Cuendet M, et al. A comparative evaluation of the anticancer properties of European and American elderberry fruits. Journal of medicinal food. 2006;9(4):498-504. doi: 10.1089/jmf.2006.9.498.
29. Olejnik A, Olkowicz M, Kowalska K, Rychlik J, Dembczyński R, Myszka K, et al. Gastrointestinal digested Sambucus nigra L. fruit extract protects in vitro cultured human colon cells against oxidative stress. Food chemistry. 2016;197:648-57. doi: 10.1016/j.foodchem.2015.11.017.
30. Häuselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Frontiers in oncology. 2014;4:28.doi:10.3389/fonc.2014.00028
31. Fulda S. Tumor resistance to apoptosis. International Journal of Cancer. 2009;124(3):511-5. doi: 10.1002/ijc.24064.
32. Arnal-Estapé A, Nguyen DX. Sweets for a bitter end: lung cancer cell–surface protein glycosylation mediates metastatic colonization. Cancer discovery. 2015;5(2):109-11. doi: 10.1158/
33. Reticker-Flynn NE, Bhatia SN. Aberrant glycosylation promotes lung cancer metastasis through adhesion to galectins in the metastatic niche. Cancer discovery. 2015;5(2):168-81. doi: 10.1158/2159-8290..
34. Shi Z, An N, Zhao S, Li X, Bao J, Yue B. In silico analysis of molecular mechanisms of legume lectin‐induced apoptosis in cancer cells. Cell Proliferation. 2013;46(1):86-96. doi: 10.1111/cpr.12009.
35. Savanur MA, Eligar SM, Pujari R, Chen C, Mahajan P, Borges A, et al. Sclerotium rolfsii lectin induces stronger inhibition of proliferation in human breast cancer cells than normal human mammary epithelial cells by induction of cell apoptosis. PloS one. 2014;9(11):e110107. doi: 10.1371/journal.pone.0110107.
36. Tatsuta T, Hosono M, Takahashi K, Omoto T, Kariya Y, Sugawara S, et al. Sialic acid-binding lectin (leczyme) induces apoptosis to malignant mesothelioma and exerts synergistic antitumor effects with TRAIL. International journal of oncology. 2014;44(2):377-84. doi:10.3892/ijo.2013.2192.
37. Chowdhury SR, Ray U, Chatterjee BP, Roy SS. Targeted apoptosis in ovarian cancer cells through mitochondrial dysfunction in response to Sambucus nigra agglutinin. Cell death & disease. 2017;8(5):e2762-e. doi: 10.1038/cddis.2017.77.
38. Henry-Mowatt J, Dive C, Martinou J-C, James D. Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene. 2004;23(16):2850-60. doi: 10.1038/sj.onc.1207534.
39. Westermann B. Bioenergetic role of mitochondrial fusion and fission. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2012;1817(10):1833-8. doi: 10.1016/j.bbabio.2012.02.033.
40. Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nature reviews Molecular cell biology. 2005;6(8):657-63. doi: 10.1038/nrm1697.
41. Zhang Y, Vareed SK, Nair MG. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life sciences. 2005;76(13):1465-72. doi: 10.1016/j.lfs.2004.08.025
42. Chemler JA, Leonard E, Koffas MA. Flavonoid biotransformations in microorganisms. Anthocyanins: Springer; 2008. p. 191-255. doi: 10.1007/978-0-387-77335-3_7.
43. Lazzè MC, Savio M, Pizzala R, Cazzalini O, Perucca P, Scovassi AI, et al. Anthocyanins induce cell cycle perturbations and apoptosis in different human cell lines. Carcinogenesis. 2004;25(8):1427-33. doi: 10.1093/carcin/bgh138.
44. Santen RJ. Benign Breast Disease in Women. [Updated 2018 May 25]. In: Feingold KR, Anawalt B, Boyce A, et al., editors: Endotext [Internet]. South Dartmouth (MA):, Inc.;2000-. Available from:
45. Girbés T, Ferreras JM, Arias FJ, Stirpe F. Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini reviews in medicinal chemistry. 2004;4(5):461-76. doi: 10.2174/1389557043403891.
46. Stirpe F. Ribosome-inactivating proteins. Toxicon. 2004;44(4):371-83. doi: 10.1016/j.toxicon.2004.05.004.
47. Ng T, Wong JH, Wang H. Recent progress in research on ribosome inactivating proteins. Current protein & peptide science. 2010;11(1):37-53. doi: 10.2174/138920310790274662.
48. Arias F, Rojo M, Iglesias R, FERRERAS JM, Girbes T. Vicia sativa L.‘run-off’and purified ribosomes: polyphenylalanine synthesis and molecular action of ribosome-inactivating proteins. Journal of experimental botany. 1993;44(8):1297-304.doi: 10.1093/jxb/44.8.1297.
49. Chen Z, Shi T, Zhang L, Zhu P, Deng M, Huang C, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer letters. 2016;370(1):153-64. doi: 10.1016/j.addr.2012.09.027.
50. Smith AJ, van Helvoort A, van Meer G, Szabó K, Welker E, Szakács G, et al. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. Journal of Biological Chemistry. 2000;275(31):23530-9. doi: 10.1074/jbc.M909002199.
51. Němcová-Fürstová V, Kopperová D, Balušíková K, Ehrlichová M, Brynychová V, Václavíková R, et al. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicology and applied pharmacology. 2016;310:215-28. doi:10.1074/jbc.M909002199.
52. Hontecillas-Prieto L, Garcia-Dominguez DJ, Vaca DP, Garcia-Mejias R, Marcilla D, Ramirez-Villar GL, et al. Multidrug resistance transporter profile reveals MDR3 as a marker for stratification of blastemal Wilms tumour patients. Oncotarget. 2017;8(7):11173. doi: g/10.18632/oncotarget.14491.
53. Januchowski R, Wojtowicz K, Andrzejewska M, Zabel M. Expression of MDR1 and MDR3 gene products in paclitaxel-, doxorubicin-and vincristine-resistant cell lines. Biomedicine & Pharmacotherapy. 2014;68(1):111-7. doi: 10.1016/j.biopha.2013.09.004.
54. Wen C, Fu L, Huang J, Dai Y, Wang B, Xu G, et al. Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin‑resistant breast cancer cells. Molecular medicine reports. 2019;19(6):5162-8. doi: 10.3892/mmr.2019.10180.
55. Huang J-F, Wen C-J, Zhao G-Z, Dai Y, Li Y, Wu L-X, et al. Overexpression of ABCB4 contributes to acquired doxorubicin resistance in breast cancer cells in vitro. Cancer chemotherapy and pharmacology. 2018;82(2):199-210. doi: 10.1007/s00280-018-3603-y.
56. Way T-D, Lee H-H, Kao M-C, Lin J-K. Black tea polyphenol theaflavins inhibit aromatase activity and attenuate tamoxifen resistance in HER2/neu-transfected human breast cancer cells through tyrosine kinase suppression. European Journal of Cancer. 2004;40(14):2165-74. doi: 10.1016/j.ejca.2004.06.018.
57. Jones RS, Parker MD, Morris ME. Quercetin, morin, luteolin, and phloretin are dietary flavonoid inhibitors of monocarboxylate transporter 6. Molecular pharmaceutics. 2017;14(9):2930-6. doi: 10.1021/acs.molpharmaceut.7b00264.
58. Shim CK, Cheon EP, Kang KW, Seo KS, Han HK. Inhibition effect of flavonoids on monocarboxylate transporter 1 (MCT1) in Caco‐2 cells. Journal of pharmacy and pharmacology. 2007;59(11):1515-9. doi: 10.1211/jpp.59.11.0008.
59. El-Far AH, Darwish NH, Mousa SA. Senescent colon and breast cancer cells induced by doxorubicin exhibit enhanced sensitivity to curcumin, caffeine, and thymoquinone. Integrative Cancer Therapies. 2020;19:1534735419901160. doi: 10.1177/1534735419901160.
60. Maridonneau‐Parini I, Harpey C. Effect of trimetazidine on membrane damage induced by oxygen free radicals in human red cells. British journal of clinical pharmacology. 1985;20(2):148-51. doi: 10.1111/j.1365-2125.1985.tb05047.x.
61. Selvi MT, Thirugnanasampandan R, Sundarammal S. Antioxidant and cytotoxic activities of essential oil of Ocimum canum Sims. from India. Journal of Saudi Chemical Society. 2015;19(1):97-100. doi: 10.1016/j.jscs.2011.12.026.

Article Statistics :Views : 223 | Downloads : 187 : 33