Average Absorbed Breast Dose (2ABD) to Mean Glandular Dose (MGD) Conversion Function for Digital Breast Tomosynthesis: A New Approach

Main Article Content

‪Raffaele M Tucciariello
Rocco Lamastra
Patrizio Barca
Marine Evelina Fantacci
Antonio C Traino https://orcid.org/0000-0003-3521-6293

Keywords

Digital breast tomosybthesis, Breast dosimetry, Absorbed breast dose, Mean glandular dose, Average glandular dose

Abstract

Background: In this work a new method for the Mean Glandular Dose evaluation in digital breast tomosynthesis (DBT) is presented.
Methods: Starting from the experimental-based dosimetric index, 2ABD, which represents the average absorbed breast dose, the mean glandular dose MGD2ABD was calculated using a conversion function of glandularity f(G), obtained through the use of Monte Carlo simulations.
Results: f(G) was computed for a 4.5 cm thick breast: from its value MGD2ABD for different compressed breast thicknesses and glandularities was obtained. The comparison between MGD2ABD estimates and the dosimetric index provided in the current dosimetry protocols, following the Dance's approach, MGDDance, showed a good agreement (<10%) for all the analyzed breast thicknesses and glandularities.
Conclusion: The strength of the proposed method can be considered an accurate mean glandular dose assessment starting from few and accessible parameters, reported in the header DICOM of each DBT exam.

References

1. Lehman C, Wellman R, Buist D, Kerlikowske K, Tosteson A, Miglioretti D. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA. 2015;175:1828-1837.
2. Sechopoulos I. A review of breast tomosynthesis. Part I. The image acquisition process. Med Phys. 2013;40(1):014301.
3. Sechopoulos I. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications. Med Phys. 2013;;40(1):014302.
4. Kerlikowske K, Grady D, Barclay J, Sickles E, Ernster V. Effect of age, breast density, and family history on the sensitivity of first screening mammography. JAMA. 1996; 276(1):33-38.
5. EUREF 2006 - European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis. [available at: http://www.euref.org/ european-Guidelines]
6. EUREF 2018 - Protocol for the Quality Control of the Physical and Technical Aspects of Digital Breast Tomosynthesis systems.[available at: https:// www.euref.org/european-guidelines/ physico-technical-protocol#breasttomo]
7. Berns E, Baker J, Barke L. Digital Mammo-graphy Quality Control Manual. 2016. [available at: https://www.acraccreditation.org /Resources/Digital-Mammography-QC-Manual-Resources]
8. Dance DR. Monte-Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys Med Biol. 1990;35(9):1211-1219.
9. Dance DR, Skinner CL, Young KC, Beckett JR, Kotre CJ. Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys Med Biol. 2000;45(11):3225-3240.
10. Dance DR, Young KC, Van Engen RE. Further factors for the estimation of mean glandular dose using the United Kingdom, European and IAEA breast dosimetry protocols. Phys Med Biol. 2009;54(14):4361-4372.
11.Dance DR, Young KC, Van Engen RE. Estimation of mean glandular dose for breast tomosynthesis: Factors for use with the UK, European and IAEA breast dosimetry protocols. Phys Med Biol. 2011;56(2):453-471.
12. Dance DR, Sechopoulos I. Dosimetry in x-ray-based breast imaging. Phys Med Biol. 2016;61(19):R271-R304.
13. Traino A, Sottocornola C, Barca P, Al E. Average absorbed breast dose in mammography: a new possible dose index matching the requirements of the European Directive 2013/59/EURATOM. Eur Radiol Exp. 2017;1:28.
14. Sottocornola C, Aringhieri G, Retico A, et al. A new method to evaluate the average absorbed dose in mammography and breast tomosynthesis. IEEE Int Symp Med Meas Appl. 2018;11:1-6.
15. Traino A, Barca P, Lamastra R, et al. Average absorbed breast dose (2ABD): an easy radiation dose index for digital breast tomosynthesis. Eur Radiol Exp. 2020;4:38.
16. Sechopoulos I, Ali Elsayed SM, Badal A, Badano A, Boone JM, Kyprianou Iacovos S, Mainegra-Hing E, McNitt-Gray MF, McMillan KL., Rogers DWO, Samei Ehsan TAC. Monte Carlo Reference Data Sets for Imaging Research. The Report of AAPM Task Group 195. Vol 42.; 2015.
17. Sarno A, Tucciariello RM, Mettivier G, Del Sarto D, Fantacci ME, Russo P. Normalized glandular dose coefficients for digital breast tomosynthesis systems with a homogeneous breast model. Phys Med Biol. 2021;66(6):065024.
18. Wu X, Barnes G, Tucker D. Spectral Dependence of Glandular Tissue, Dose in Screening Mammography. Radiology. 1991;179:143-148.
19. Wu X, Gingold EL, Barnes GT, Tucker DM. Normalized Average Glandular Dose in Molybdenum target-Rhodium Filter and Rhodium target-Rhodium Filter Mammography. Radiology. 1994;193:83-89.
20.Boone JM. Glandular breast dose for monoenergetic and high-energy x-ray beams: Monte Carlo assessment. Radiology. 1999;213(1):23-37.
21. Huang SY, Boone JM, Yang K, Kwan ALC, Packard NJ. The effect of skin thickness determined using breast CT on mammographic dosimetry. Med Phys. 2008;35(4):1199-1206.
22. Massera RT, Tomal A. Skin models and their impact on mean glandular dose in mammography. Phys Medica. Published online. 2018;51:38-47.
23.Tucciariello RM, Barca P, Caramella D, Lamastra R, Traino C, Fantacci ME. Monte carlo methods for assessment of the mean glandular dose in mammography: Simulations in homogeneous phantoms. Bioinforma 2019 - 10th Int Conf Bioinforma Model Methods Algorithms, Proceedings; Part 12th Int Jt Conf Biomed Eng Syst Technol BIOSTEC 2019. 2019:242-249.
24. Sarno A, Mettivier G, Di Lillo F, Tucciariello RM, Bliznakova K, Russo P. Normalized glandular dose coefficients in mammography, digital breast tomosynthesis and dedicated breast CT. Phys Medica. 2018;55:142-148.
25. Sarno A, Tucciariello RM, Mettivier G, di Franco F, Russo P. Monte Carlo calculation of monoenergetic and polyenergetic DgN coefficients for mean glandular dose estimates in mammography using a homogeneous breast model. Phys Med Biol. 2019;64(12):125012.
26. Tucciariello R, Barca P, Lamastra R, Traino A, Fantacci M. Monte Carlo Methods to evaluate the Mean Glandular Dose in Mammography and Digital Breast Tomosynthesis. In: Hall TB, ed. Monte Carlo Methods: History and Applications. Nova Science Publishers, Inc.; 2020:73-110.
27. Sarno A, Mettivier G, Russo P. Air kerma calculation in Monte Carlo simulations for deriving normalized glandular dose coefficients in mammography. Phys Med Biol. 2017;62(14):N337.
28. Sempau J, Sánchez-Reyes A, Salvat F, Oulad Ben Tahar H, Jiang SB, Fernández-Varea JM. Monte Carlo simulation of electron beams from an accelerator head using PENELOPE. Phys Med Biol. 2001;46(4):1163-1186.
29. Tucciariello RM, Barca P, Caramella D, et al. 3D printing materials for physical breast phantoms: Monte Carlo assessment and experimental validation. BIODEVICES 2020 - 13th Int Conf Biomed Electron Devices, Proceedings; Part 13th Int Jt Conf Biomed Eng Syst Technol BIOSTEC 2020:254-262.
30. Tucciariello RM, Barca P, Del Sarto D, et al. Voxelized breast phantoms for dosimetry in mammography. In: 12th Int. Conf. Bioinforma. Model. Methods Algorithms, Proceedings; Part 14th Int. Jt. Conf. Biomed. Eng. Syst. Technol. BIOSTEC 2021:154-161.

Article Statistics :Views : 139 | Downloads : 122 : 14