

DOI: 10.32768/abc.9268135740-268

Comparative Analysis of Abbreviated and Full Protocol MRI in Detecting Axillary Lymph Node Metastasis in Patients with Known Breast Cancer

Fahimeh Zeinalkhani^{a,b} , Saeed Mohammadzadeh^{a,b} , Fatemeh Mahdavi Sabet^c , Peyman Kamali Hakim^d , Hadise Zeinalkhani^e , Elahe Baban Taher^a , Simin Hashemi^f , Afroz Moradkhani^a , Mahdiyeh Movahedi^{g,h} , Maryam Movahedi^{*a}

^aAdvanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran

^bDepartment of Radiology, Tehran University of Medical Sciences, Imam Hospital, Tehran, Iran

^cFaculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran

^dDepartment of Radiology, Iran University of Medical Sciences, Tehran, Iran

^eDepartment of Radiology, Shahid Beheshti University of Medical Sciences, Imam Hospital, Tehran, Iran

^fDepartment of Radiology, Cancer Institute, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran

^gImmunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran

^hChildren's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran

ARTICLE INFO

Received:

26 September 2025

Revised:

1 January 2026

Accepted:

2 January 2026

Keywords:

breast neoplasms, lymph nodes, axilla, MRI, sentinel lymph node biopsy

ABSTRACT

Background: Accurate axillary lymph node staging is crucial for breast cancer prognosis and treatment planning. This study compares the diagnostic efficacy of abbreviated MRI (AB-MRI) protocols with limited sequences and reduced time against full-diagnostic MRI (FD-MRI) in staging axillary lymph node metastasis of breast cancer patients.

Methods: This was a retrospective cross-sectional diagnostic accuracy study of 88 women with breast cancer who underwent MRI for axillary lymph node staging. MRI protocols included FD-MRI, noncontrast T1 sequence, and contrast-enhanced T1 sequence. Imaging findings, interpreted by 2 radiologists blinded to histopathological results, were correlated with findings from sentinel lymph node biopsy or axillary lymph node dissection as the gold standard. Data analysis comprised diagnostic performance parameters (sensitivity and specificity) and interprotocol agreement using the κ statistic.

Results: No statistically significant differences were detected among the 3 protocols (all McNemar $P > 0.05$). The noncontrast abbreviated MRI protocol demonstrated a sensitivity of 84.9% (95% CI, 72.4%–93.3%) and a specificity of 85.7% (95% CI, 69.7%–95.2%). Unweighted Cohen κ demonstrated strong concordance between the noncontrast and contrast-enhanced AB-MRI protocols ($\kappa = 0.931$; 95% CI, 0.86–1.00), between the noncontrast AB-MRI protocol and the FD-MRI ($\kappa = 0.930$; 95% CI, 0.85–1.00), and between the contrast-enhanced AB-MRI protocol and the FD-MRI ($\kappa = 0.907$; 95% CI, 0.82–1.00), respectively.

Conclusion: Noncontrast AB-MRI provides a less invasive, cost-effective alternative to FD-MRI for staging axillary lymph nodes in breast cancer, with shorter scan times and fewer procedural risks. Further studies are needed for validation in larger cohorts.

Copyright © 2026. This is an open-access article distributed under the terms of the [Creative Commons Attribution-Non-Commercial 4.0](https://creativecommons.org/licenses/by-nc/4.0/) International License, which permits copy and redistribution of the material in any medium or format or adapt, remix, transform, and build upon the material for any purpose, except for commercial purposes.

INTRODUCTION

Breast cancer is known as the most frequently diagnosed malignancy among women globally, affecting 2.3 million patients in 2024.¹ Proper care and the use of optimal methods to determine the need for invasive interventions in patients are some of the most important factors in improving outcomes in

*Address for correspondence:

Maryam Movahedi, MD,
Advanced Diagnostic and Interventional Radiology Research Center, Imam Khomeini Hospital, Bagher Khan St, Chamran Highway, Tehran, Iran
Email: maryam.movahed@yahoo.com

these patients. The use of biopsy for detecting lymph node metastasis in patients with primary breast tumors plays an important role in tumor staging, prognosis, and overall survival outcomes.²

Historically, assessing axillary lymph node status required patients to undergo complete axillary lymph node dissection (ALND) for both diagnostic and therapeutic purposes. In the last 15 years, sentinel lymph node biopsy (SLNB) has become the primary alternative to ALND for the classification of breast cancer patients with a negative clinical node, and it is suggested that if there is a positive finding in the patients' SLNB, in the next step, they should go for a complete ALND.³

Current findings from the ACOSOG Z0011 clinical trial indicate that the indication for ALND is no longer based only on distinguishing between negative (N0) and positive (<N1) metastasis. Instead, the decision now differentiates between the absence or presence of nonsignificant metastasis (N0–N1 and 0–3 positive nodes) vs significant lymph node metastasis (≥N2 and ≥4 positive nodes). In addition, those who have tumors with *T1* and *T2* stages can also skip ALND.⁴

Although SLNB as the first stage is a less invasive method than ALND, it is associated with complications such as lymphedema, paresthesia, and possibly permanent impairment of arm muscle movement.⁵ As a result, in recent years, noninvasive methods such as ultrasonography and PET-CT have been suggested to evaluate the axilla in the first stage.⁵ Compared with other imaging methods for lymph node evaluation, MRI offers benefits including the absence of ionizing radiation and superior interobserver and intraobserver reliability.^{6,7}

Performing breast MRI with contrast injection and taking several hundred images can take between 30 and 40 minutes. The time required to generate a report by the radiologist should also be considered. Abbreviated MRI (AB-MRI) is a shortened version of the standard full-diagnostic protocol in breast MRI (FD-MRI), which was introduced as a diagnostic and screening tool. Compared with FD-MRI, AB-MRI requires less scanning time, is associated with reduced costs, and therefore is more practical, especially in high-patient-volume centers and in centers with limited MR slots.^{6,8} Contrast enhancement in lymph nodes, which occurs regardless of malignancy, complicates the diagnostic challenge of distinguishing metastatic from nonmetastatic disease. Moreover, the intrinsic challenge of differentiating lymph nodes from adjacent adipose tissue requires the implementation of a specialized pulse sequence. A complete staging approach, incorporating precontrast imaging, is vital for precise evaluation.⁴ Limited studies have focused

on the use and effectiveness of AB-MRI in the investigation of axillary lymph node metastasis, comparing it with the standard FD-MRI protocol, and so far, most of them have focused on the use of this method in the diagnosis of breast cancer. This study aims to compare the accuracy of AB-MRI with and without contrast and FD-MRI in the diagnosis and staging of axillary lymph node metastasis in breast cancer.

METHODS

Patient selection

This was a retrospective cross-sectional diagnostic accuracy study that included 88 women with a mean age of 46.56 years who underwent MRI for axillary lymph node staging between 2022 and 2024 at Imam Khomeini Hospital Complex. The primary goal was to compare the diagnostic performance of AB-MRI protocols (with and without contrast) and FD-MRI in the diagnosis of axillary lymph node metastasis. The study was approved by the research ethics committee. All patients provided written informed consent prospectively for the routine clinical MRI acquisition. For this retrospective analysis utilizing deidentified data, a waiver of additional consent was granted by the institutional ethics committee. This study was conducted and reported in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline. The completed checklist is provided in the Supplementary Material.

Patient data including MRI images, biopsy results, surgical reports, and patients' demographic information were collected from the database of our hospital. A cohort of patients was selected based on a strict set of criteria: (1) patients diagnosed with breast cancer (stages I–III); (2) patients who underwent FD-MRI with contrast injection and AB-MRI with and without contrast injection all performed in our institution; (3) subsequent surgical evaluation (SLND/ALND) after imaging; and (4) complete clinical data. Patients were excluded from the study based on the following criteria: a history of prior surgery, radiotherapy, chemotherapy for breast cancer, and stage IV patients (metastatic breast cancer); contraindications for MRI or claustrophobia; and the unavailability of all necessary MRI sequences or images of inadequate quality for analysis. Inclusion and exclusion criteria were approved by an expert radiologist. Patients with stage IV breast cancer were excluded, as the primary aim was to assess staging accuracy prior to knowledge of systemic disease, thereby informing locoregional treatment decisions. All potentially eligible cases were first screened against the predefined inclusion and exclusion criteria by the study coordinator, using

clinical records. Cases with ambiguous eligibility were subsequently reviewed by an experienced breast radiologist, who made the final decision on inclusion or exclusion.

MRI imaging protocols

A bilateral breast MRI was conducted with the patient in a prone position following a standardized protocol⁹ on a 1.5-T Achieva system (Philips Medical Systems) using a 4-channel bilateral breast coil (Invivo, Gainesville, FL, USA). The FD-MRI consisted of axial and coronal turbo spin-echo (TSE) fat-saturated T2-weighted sequences; axial TSE T1-weighted sequences; and axial diffusion-weighted imaging (DWI). Dynamic contrast-enhanced (DCE) imaging was conducted with a fat-suppressed axial 3D T1-weighted spoiled gradient-echo sequence subsequent to the intravenous administration of 0.2 mmol/kg gadoterate meglumine (Dotarem; Guerbet), accompanied by a 15-mL saline flush. The imaging parameters comprised a TR/TE of 9/4 ms, a bandwidth of 31.25 Hz/pixel, a field of view (FOV) of 320 mm, a slice thickness of 2.0 mm, a matrix size of 352 × 288, a flip angle of 30°, and a number of excitations (NEX) of 1. Maximum intensity projection (MIP) and subtraction images were generated for each postcontrast phase.¹⁰ DWI was conducted with an axial echo-planar sequence with spatial fat suppression, 10 minutes following contrast administration. The DWI settings were a TR/TE of 7700/89 ms, a FOV of 380 mm, a flip angle of 90°, a matrix size of 192 × 192, a slice thickness of 5 mm, a NEX of 4, and *b* values of 0, 400, and 800 s/mm². The sequences used for the abbreviated protocol were extracted from the full breast MRI examination. This approach enabled direct, head-to-head comparison of different protocols within the same imaging session and minimized biases associated with comparing separate examinations, including potential differences in acquisition parameters, disease evolution, and imaging artifacts. We used an abbreviated breast protocol comprising 2 separate T1-weighted acquisitions. The initial was an abbreviated noncontrast method, encompassing axial and coronal T1-weighted images. This was followed by a contrast-enhanced protocol, comprising axial and coronal dynamic T1-weighted series with fat suppression. Throughout this manuscript, the term *abbreviated protocol* refers specifically to this defined combination of sequences. All abbreviated sequences were obtained using the system's built-in body coil, which, although primarily designed for transmitting radiofrequency pulses, was also employed as the receiver coil instead of the standard local surface coils, such as the dedicated breast coil typically used for breast MRI. All MRI examinations

were performed within standard preoperative staging timelines (<4 weeks prior to surgery), minimizing potential disease progression bias.

MRI interpretation

Patient data were extracted from the hospital dataset by 2 independent investigators, with discrepancies resolved by cross-checking to ensure quality and consistency. The images were independently reviewed by 2 expert radiologists with 8 and 10 years of experience. All radiologists were blinded to histopathological results and to each other's interpretations. Reciprocally, the pathologists who assessed the specimens were blinded to all imaging findings, ensuring a dual-blinding strategy to minimize interpretation bias. Discrepancies in readers' initial evaluations were later resolved through a collaborative consensus discussion to determine the final decision for each case. The 2 radiologists used these discussions to perform a joint reassessment, meticulously analyzing key imaging characteristics against established radiological criteria for lymph node evaluation. The criteria for classifying lymph nodes as metastatic included their short axis size more than 10 mm; morphology (such as round shape, cortical thickening more than 3 mm, and loss of fatty hilus); and their signal intensity on T1-weighted imaging.¹¹ All patients' MRI images were first analyzed using noncontrast AB-MRI, subsequently assessed using contrast-enhanced AB-MRI, and finally evaluated with FD-MRI. A 1-month delay was established between each set of MRI image interpretations to mitigate any potential for recall bias. Histopathologic information was obtained from clinical reports. All patients with breast cancer were histologically evaluated using either core needle biopsy or vacuum-assisted biopsy. Information derived from biopsy specimens included the histopathologic subtype, Ki-67 index, and the levels of estrogen receptors (ER), progesterone receptors (PR), and HER2.

Data analysis

Surgical and pathological findings were the gold standard to confirm the presence of axillary lymph node metastasis, and correlation of imaging findings with histopathological results was checked to calculate the diagnostic accuracy of each MRI protocol. True positives (TP) denote instances where the MRI protocol accurately detected a metastatic lymph node confirmed by histology; false positives (FP) imply cases where the MRI protocol erroneously indicated a metastatic lymph node not verified by histology; false negatives (FN) refer to situations where the MRI protocol overlooked a metastatic

Table 1. Patient Demographics and Characteristics of Invasive Breast Cancer Based on Axillary Lymph Node Status

Variable	Lymph node positive, No. (%) (n = 53)	Lymph node negative, No. (%) (n = 35)
Age, y		
≤50	33 (54.1)	28 (45.9)
>50	20 (74.1)	7 (25.9)
Grade		
1	8 (53.3)	7 (46.7)
2	30 (66.7)	15 (33.3)
3	12 (66.7)	6 (33.3)
Missing data	10	
Cancer Type		
DCIS	0 (0.0)	4 (100.0)
IDC	45 (62.5)	27 (37.5)
ILC	7 (63.6)	4 (36.4)
Missing data	1	
Breast Cancer Subtype		
ERBB2 Enriched	3 (42.9)	4 (57.1)
Luminal A	34 (68.0)	16 (32.0)
Luminal B	10 (62.5)	6 (37.5)
Triple Negative	5 (45.5)	6 (54.5)
Missing data	4	
Tumor Size, cm		
≤2	13 (50.0)	13 (50.0)
2–5	28 (71.8)	11 (28.2)
>5	6 (60.0)	4 (40.0)
Missing data	13	
ER Status		
Negative	8 (44.4)	10 (55.6)
Positive	44 (63.8)	25 (36.2)
Missing data	1	
PR Status		
Negative	17 (60.7)	11 (39.3)
Positive	35 (60.3)	23 (39.7)
Missing data	2	
ERBB2 Status		
Negative	39 (63.9)	22 (36.1)
Positive	22 (36.1)	10 (43.5)
Missing data	4	
Ki-67 Status		
Negative	15 (60.0)	10 (40.0)
Positive	37 (61.7)	23 (38.3)
Missing data	3	
Fibroglandular		
A	3 (60.0)	2 (40.0)
B	14 (63.6)	8 (36.4)
C	21 (58.3)	15 (41.7)
D	15 (62.5)	9 (37.5)
Missing data	1	
Focality		
Multifocal	21 (75.0)	7 (25.0)
Unifocal	27 (52.9)	24 (47.1)
Missing data	9	
Tumor Centers		
Multicenter	5 (100.0)	0 (0.0)
Single center	30 (58.8)	21 (41.2)
Missing data	32	

BPE, background parenchymal enhancement; DCIS, ductal carcinoma in situ; ER, estrogen receptor; *ERBB2*, erb-b2 receptor tyrosine kinase 2 (formerly HER2); IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; PR, progesterone receptor.

lymph node present in the histological findings; and true negatives (TN) indicate instances where the MRI

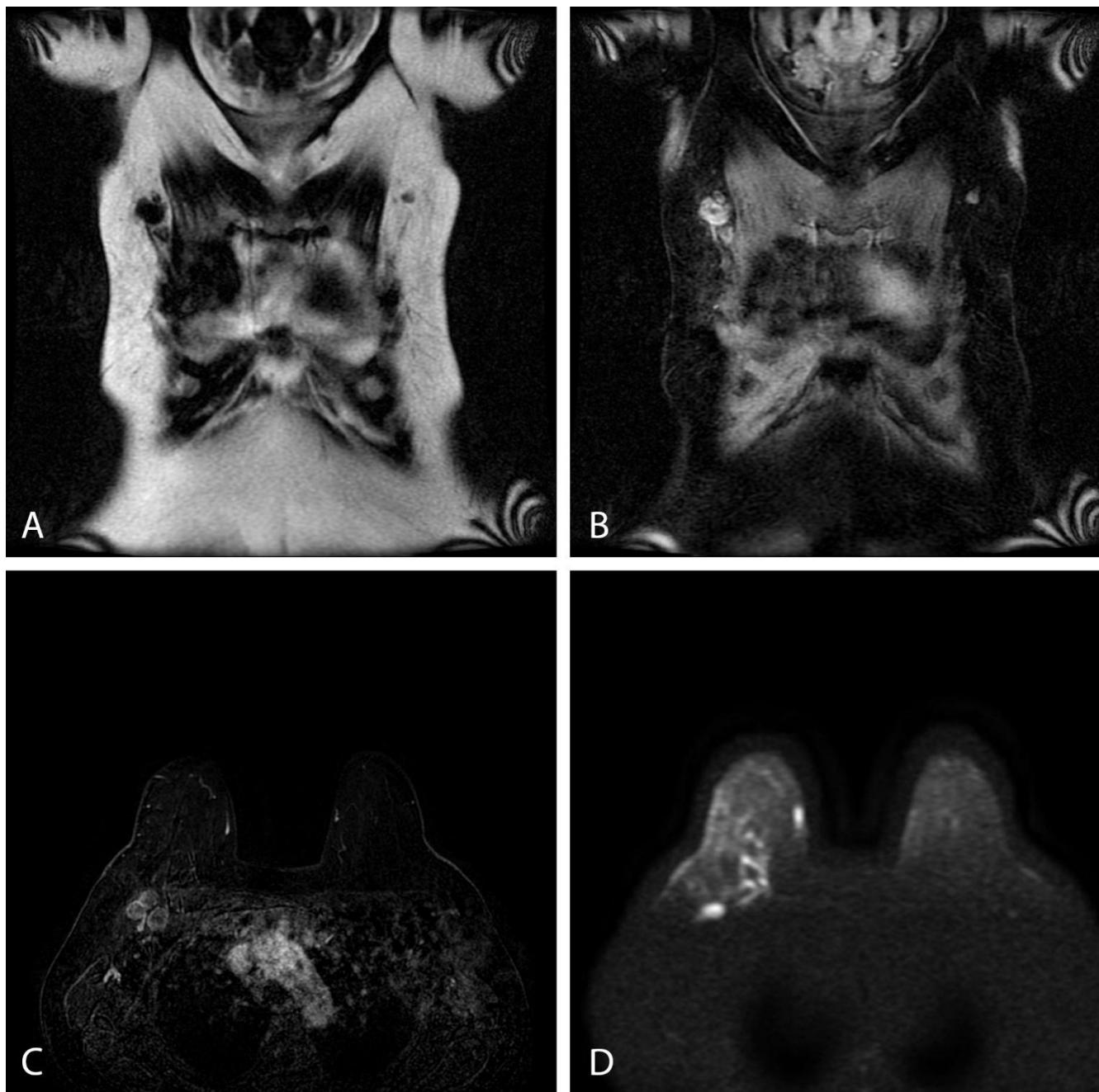
protocol correctly identified the benign lymph node, as confirmed by histology. Diagnostic performance

metrics, including sensitivity, specificity, positive and negative likelihood ratios (PLR/NLR), and accuracy were calculated on a per-patient basis. The sample size was calculated using the formulas for diagnostic accuracy studies: $n = (Z_{1-\alpha/2}^2 \times Se \times (1 - Se)) / (d^2 \times \text{Prevalence})$ for sensitivity, and $n = (Z_{1-\alpha/2}^2 \times Sp \times (1 - Sp)) / (d^2 \times (1 - \text{Prevalence}))$ for specificity. Assuming expected sensitivity and specificity of 0.80, $Z = 1.96$ (95% confidence), precision $d = 0.12$, and prevalence ≈ 0.50 , the required sample size for each metric is approximately 85. Our sample of 88 patients therefore provided adequate precision for both sensitivity and specificity estimation. McNemar test was employed for pairwise comparisons of diagnostic performance between the 3 MRI protocols, inherently accounting for within-subject correlation in this paired design. Bonferroni correction was applied across the 3 comparisons. The data obtained from all 3 groups were analyzed using SPSS version 26.0 software. Absolute frequency (N) and percentage (%) were employed to represent qualitative statistics. Continuous variables were assessed for normality using the Shapiro-Wilk test. Normally distributed data were presented as mean (SD), and nonnormal data as median (IQR). Unweighted Cohen κ tests were employed to assess interprotocol concordance for nominal data (poor < 0.20 ; fair $= 0.21\text{--}0.40$; moderate $= 0.41\text{--}0.60$;

good $= 0.61\text{--}0.80$; very good $= 0.81\text{--}0.99$; perfect $= 1.00$).¹² Statistical significance was set at $P < 0.05$.

RESULTS

Preoperative MRI was evaluated against surgical pathology in a cohort of 88 women with breast cancer. The mean age of patients was 46.5 (9.4) years and the mean size of lymph nodes was 30.5 (19.2) mm. The patient's demographic and tumor characteristics are presented in Table 1. All 88 patients underwent precontrast T1-weighted coronal sequence breast MRI. Axillary lymph node (ALN) involvement was detected in 50 patients in noncontrast AB-MRI. The distribution of involvement by anatomical level was as follows: 38 patients (76% of the patients with ALN) were observed to have only level I involvement, 4 patients (8% of the patients with ALN) to have only level II involvement, 4 patients (8% of the patients with ALN) to have both levels I and II involvement, and 4 patients (8% of the total) to have levels I, II, and III involvement (Figure 1A, Figure 2A). In the remaining 38 patients, no ALN involvement was detected on noncontrast AB-MRI. Pathology results were available for these patients. Of the 50 patients with ALN involvement on MRI, 45 cases were histopathologically positive. Of the 38 patients without ALN involvement on MRI, 30 were proven negative in histopathology.


Table 2. Diagnostic value of different protocols in evaluation of lymph node involvement. PLR: positive likelihood ratio, NLR: negative likelihood ratio, AB-MRI: abbreviated MRI protocol, FD-MRI: full diagnostic MRI protocol

	Sensitivity (95% CI)	Specificity (95% CI)	PLR (95% CI)	NLR (95% CI)	Accuracy ^a (95% CI)
AB-MRI	84.9% (72.4%–93.3%)	85.7% (69.7%–95.2%)	5.94 (2.62–13.4)	0.18 (0.09–0.34)	85.2% (76.1%–91.9%)
noncontrast					
AB-MRI with contrast	81.1% (68.0%–90.6%)	82.9% (66.4%–93.4%)	4.73 (2.26–9.92)	0.23 (0.13–0.41)	81.8% (72.2%–89.2%)
enhancement					
FD-MRI	88.7% (77.0%–95.7%)	82.9% (66.4%–93.4%)	5.17 (2.48–10.7)	0.14 (0.06–0.29)	86.4% (77.4%–92.8%)

AB-MRI, abbreviated MRI protocol; FD-MRI, full-diagnostic MRI protocol; NLR, negative likelihood ratio; PLR, positive likelihood ratio.

Contrast-enhanced AB-MRI reported 49 cases of positive lymph involvement and 39 cases of negative involvement among 88 patients. Among 49 patients, 37 cases (75.4%) had level 1 lymph node involvement, 4 cases (8.2%) with level 2 lymph node, 4 patients (8.2%) with level 1 and 2 lymph nodes, and 4 cases (8.2%) had involvement of all 3 levels (Figure 1B, Figure 2B). Also, 43 cases out of the 49 patients with ALN involvement on MRI were proven positive in pathology. Of the 39 patients without ALN involvement on MRI, 29 had a negative histopathology. Among the 88 patients who underwent a FD-MRI, 53 cases showed axillary lymph node involvement, while 35 cases did not. Out

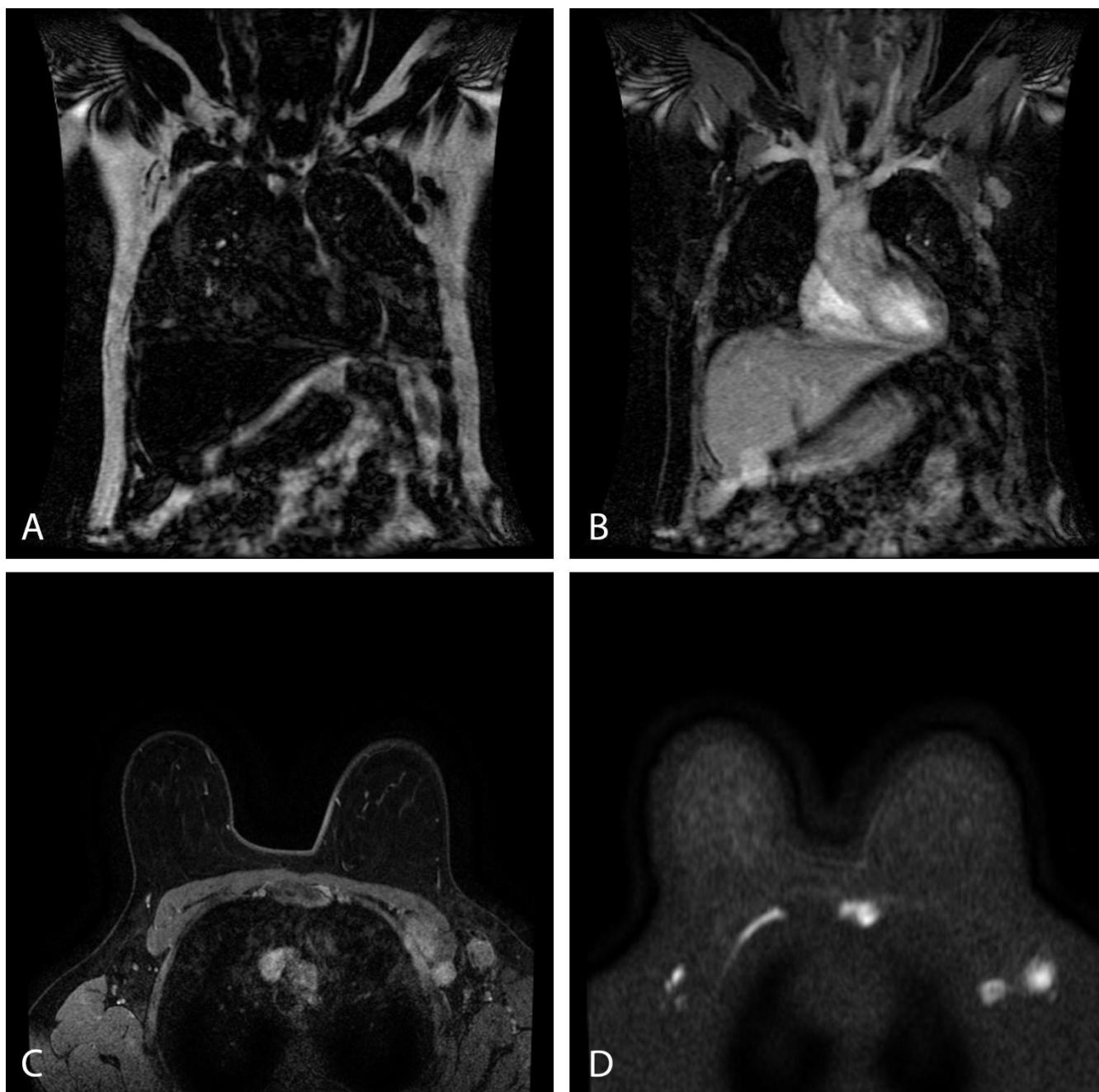

of the 53 patients, 40 cases (75.6%) had level 1 lymph node involvement, 4 cases (7.5%) had level 2 lymph node involvement, 5 patients (9.4%) had involvement in both levels 1 and 2, and 4 cases (7.5%) had involvement across all 3 levels (Figure 1C, Figure 2C). Histopathology results were positive in 47 of the 53 patients with lymph node involvement and negative in 29 of the 35 patients without it. Sensitivity, specificity, PLR, NLR, and accuracy of the 3 protocols evaluated in this study for detection of lymph node involvement are summarized in Table 2, Table 3, Table 4, and Table 5. McNemar test showed no statistically

Figure 1. Abbreviated MRI Evaluation of Axillary Lymphadenopathy in Breast Cancer. A 32-year-old woman with diagnosed invasive ductal carcinoma of the right breast. A, T1-weighted coronal image without fat saturation and contrast demonstrates a hypointense lymph node in the right axilla. B, T1-weighted coronal image with contrast and fat saturation highlights the lymph node with increased signal intensity. C, T1-weighted axial image with contrast further enhances visualization of the pathological lymph node. D, Axial diffusion-weighted imaging (DWI) reveals restricted diffusion, consistent with metastatic involvement.

significant difference among the 3 protocols in the detection of axillary lymph node involvement; however, the study was not powered for equivalence (all $P > 0.05$) (Figure 1D, Figure 2D). Moreover, the high unweighted Cohen κ confirmed high agreement among the various MRI protocols for the detection of lymph node involvement. The comparison between the noncontrast AB-MRI and the contrast-enhanced AB-MRI protocols yielded a κ value of 0.931 (95%

CI, 0.86–1.00), indicating very good agreement. Similarly, the contrast-enhanced AB-MRI showed substantial agreement with the FD-MRI, with a κ of 0.907 (95% CI, 0.82–1.00). The agreement between the noncontrast T1-weighted and the FD-MRI was also very good, with a κ value of 0.930 (95% CI, 0.85–1.00). All κ values were statistically significant, with $P < 0.001$.

Figure 2. A 54-year-old woman with histologically proven breast cancer in the left breast. A, T1-weighted coronal image without fat saturation and contrast shows a left hypointense axillary lymph node. B, T1-weighted coronal image with contrast and fat saturation demonstrates the lymph node with increased signal intensity. C, T1-weighted axial image with contrast further enhances visualization of the pathological lymph node. D, Axial diffusion-weighted imaging (DWI) reveals restricted diffusion, consistent with metastatic involvement.

Table 3. Sensitivity and Specificity of T1 Coronal Without Contrast

	T1-W/O cont. +	T1-W/O cont. -
Lymph +	TP: 45	FN: 8
Lymph -	FP: 5	TN: 30

FN, false negative; FP, false positive; TN, true negative; TP, true positive; T1-W/O cont., T1-weighted without contrast. Sensitivity: 0.849; Specificity: 0.857; NPV: 0.79; PPV: 0.9; Accuracy: 0.852; κ : 0.696; $P < 0.001$.

Table 4. Sensitivity and Specificity of T1 Coronal Fat Sat with Contrast

	T1-W cont. +	T1-W cont. -
Lymph +	TP: 43	FN: 10
Lymph -	FP: 6	TN: 29

FN, false negative; FP, false positive; TN, true negative; TP, true positive; T1-W cont., T1-weighted with contrast. Sensitivity: 0.811; Specificity: 0.829; NPV: 0.744; PPV: 0.878; Accuracy: 0.818; κ : 0.628; $P < 0.001$.

Table 5. Sensitivity and Specificity of Full-Protocol MRI

	Full-MRI +	Full-MRI -
Lymph +	TP: 47	FN: 6
Lymph -	FP: 6	TN: 29

FN, false negative; FP, false positive; TN, true negative; TP, true positive.
Sensitivity: 0.887; Specificity: 0.829; NPV: 0.829; PPV: 0.887;
Accuracy: 0.864; κ : 0.715; $P < 0.001$.

DISCUSSION

Implementing AB-MRI offers substantial workflow benefits through reduced acquisition time (3 to 10 minutes vs 30+ minutes for full-diagnostic MRI), enabling higher throughput in busy centers and addressing limited MRI slots. Cost savings from shorter scans and simplified reading (often <3 minutes) make AB-MRI feasible for broader screening, particularly in high-volume or resource-limited settings, while avoiding gadolinium in contraindicated patients via unenhanced protocols. This study highlights the noninferior performance of a T1-weighted pulse sequence, acquired using the system's built-in body coil, into the standard preoperative breast MRI protocol in comparison to full-protocol MRI. This modification significantly improves the discovery of axillary lymph node involvement, demonstrating a high positive predictive value. Historically, prior to the advent of SLNB, all patients diagnosed with invasive breast cancer underwent complete ALND for both diagnostic and therapeutic goals.¹³ To mitigate the considerable morbidity associated with ALND, SLNB was introduced as a less invasive alternative.¹⁴ However, before the ACOSOG Z0011 study, patients with positive SLNB findings were still required to undergo complete ALND. The results of the aforementioned study led to a paradigm shift, allowing women with invasive breast tumors up to 5 cm in size, no clinically palpable axillary or parasternal lymph nodes, and 1 to 2 positive SLNB nodes to avoid axilla dissection.¹⁵

The final confirmation of lymph node metastasis is performed by invasive methods, and finding methods to identify lymph node metastasis preoperatively and with less invasiveness is one of the current goals. Ultrasound remains the primary modality for this purpose owing to its accessibility, real-time assessment, and capability for image-guided sampling. Nonetheless, its performance may be limited by operator dependency, restricted coverage, and reduced sensitivity for small or deep-seated metastases.^{16,17} In this context, our study investigated the potential of an abbreviated noncontrast MRI protocol as a complementary tool in

specific clinical scenarios. This approach would be particularly relevant if noncontrast techniques like diffusion-weighted imaging advance sufficiently to become reliable standalone methods for screening or staging.

Because of its limited ability to provide complete visualization of the axilla region, MRI currently plays a minor role in imaging this region. Although protocols specific to the axilla region have increased sensitivity, specificity, positive and negative predictive value, these protocols require more time and are currently not very useful in the clinic.⁵ The acquisition of a standard full MRI protocol, which includes multiple sequences, is traditionally a lengthier process, while the abbreviated protocol is performed by omitting certain sequences and reducing the time required for imaging.¹⁸ Many studies have demonstrated the potential of abbreviated MRI in the diagnosis and characterization of a variety of cancers, such as prostate, breast, cervix, and hepatocellular carcinoma.¹⁹⁻²² Nevertheless, the abbreviated protocol's diagnostic accuracy for the detection of axillary lymph node invasion in breast cancer has not yet been fully assessed in the literature. While MRI showed exceptional performance in detecting and characterizing primary breast cancer using different established scoring systems²³, assessing axillary lymph nodes remains a challenge. This is mainly because all lymph nodes, regardless of metastatic involvement, display contrast enhancement after the administration of contrast material. Additionally, since the enhancement pattern of lymph nodes may resemble that of the surrounding fat tissue, a pulse sequence for lymph node staging is acquired prior to contrast agent injection to improve diagnostic accuracy.⁵ The coronal plane is particularly beneficial for visualizing parasternal, infraclavicular, and supraclavicular lymph nodes, offering a more comprehensive anatomical assessment while requiring fewer imaging sections compared to axial imaging.⁴

Our study showed that the noncontrast T1 sequence has the same performance as FD-MRI, with no significant difference in sensitivity and specificity. This similar performance was also supported by our interprotocol agreement analysis, which showed that all 3 protocols can be used interchangeably as indicated by consistent "very good" pairwise κ values. With its high positive and negative likelihood ratios for detecting axillary lymph node involvement, noncontrast AB-MRI shows strong potential for integration into routine clinical practice. An abbreviated, noncontrast MRI methodology provides a more cost-effective and safer method for assessing axillary lymph node involvement. This approach

markedly diminishes patient exposure to the potential concerns of contrast agents, including nephrogenic systemic fibrosis, gadolinium tissue deposition, allergic reactions, and pregnancy-related concerns. Refraining from contrast administration is particularly advantageous for patients with renal insufficiency or those requiring many imaging procedures, since it alleviates the burden of contrast exposure while maintaining diagnostic efficacy. Abbreviated MRI could also enhance access to MRI in low-resource environments, where contrast agents may be few or inaccessible. It would also decrease scan duration and total examination expenses.²⁰ Nonetheless, contrast-enhanced MRI remains indispensable for comprehensive evaluation and accurate staging of breast disease, as the abbreviated noncontrast protocol cannot delineate the full extent of tumor involvement. Accordingly, this protocol should be regarded as a complementary adjunct applicable in selected clinical scenarios rather than a replacement for standard contrast-enhanced imaging in complete disease assessment.

In the study by Kadioglu *et al.*, 3 different types of abbreviated protocol (AP) were extracted from the full MRI protocol. In AP1, T2-weighted and diffusion-weighted axial images were acquired, whereas in AP2, axial T1-weighted fat-saturated images were attained 2 minutes after contrast administration. In AP3, both AP2 and diffusion-weighted images were analyzed. For each protocol, the lesion's location, number, size, and the presence of axillary lymphadenopathy were assessed separately. In this study, in all types of protocols, the evaluation time was shorter than the full protocol, and the best diagnostic correlation in all the investigated factors, including axillary lymphadenopathy ($\kappa=0.842$) occurred in the AP3 protocol.²⁴

Bode *et al.* investigated regional lymph nodes and reported that the addition of a short coronal T1-weighted MRI sequence was effective in identifying patients with clinically significant lymph node metastasis ($\geq N2$), achieving a high negative predictive value (98.8%). However, the positive predictive value was relatively low (50.6%), likely because the MRI observers were only asked to report the presence or absence of lymph node metastasis, without considering the number of metastatic nodes, which defines clinically significant involvement. This limitation may have reduced the ability to correctly identify patients with $\geq N2$ metastasis, resulting in a lower PPV.⁴ Also, Pesapane *et al.* meta-analysis aligns with our sensitivity findings (AB-MRI 86% vs. full MRI 95%), emphasizing comparable specificity and practical advantages for dense breasts.²⁰

Our study faced several limitations: (1) The study was retrospective, which presents inherent concerns

of selection bias and unmeasured confounding. Despite the available research on this topic, further generalizable multicenter prospective investigations with large sample sizes are needed on whether abbreviated T1-weighted imaging with and without contrast can reliably stage axillary lymph nodes in breast cancer patients compared with the traditional FD-MRI. (2) The research does not assess interreader agreement among radiologists, which may indicate inconsistencies in interpretation and impact the reliability of the results and reproducibility in other settings.

CONCLUSION

Abbreviated T1-weighted MRI protocols present a promising alternative to FD-MRI, especially in time-sensitive resource-constrained settings or in a subset of patients with contraindication to contrast. Although they may not fully match the sensitivity of FD-MRI protocols for accurate detection of lymph node metastases, they provide a reliable and efficient option for detecting axillary lymph node metastasis. In clinical practice, abbreviated MRI protocols could be strategically implemented to complement traditional diagnostic pathways, reducing scan times and costs while maintaining diagnostic accuracy. Moreover, unenhanced T1-weighted MRI sequences may hold diagnostic value in lymph node assessment, especially if future developments in noncontrast MRI—primarily diffusion-weighted imaging—enable their use as standalone protocols for screening or disease extent evaluation.

FUNDING

None.

CONFLICT OF INTERESTS

The authors declare no financial or nonfinancial conflict of interest.

ETHICAL CONSIDERATIONS

This study was approved by the research ethics committee (IR.TUMS.IKHC.REC.1403.536) and written informed consent was obtained from patients. The patients in this manuscript gave written informed consent for the publication of their case details.

DATA AVAILABILITY

The datasets generated or analyzed during the study are available from the corresponding author upon request.

ACKNOWLEDGMENTS

Not Applicable.

AI DISCLOSURE

Artificial intelligence tools were used only to

assist with language editing. The authors take full responsibility for the content of the manuscript.

AUTHOR CONTRIBUTION

FZ: Conceptualization, Methodology, Project administration, Supervision; SM: Writing—review & editing; FMS: Formal analysis; PKH: Resources; HZ:

Resources; EBT: Resources; SH: Resources; AM: Resources; Mahdiyeh M: Resources, Writing—review & editing; Maryam M: Investigation, Project administration, Validation, Writing—original draft, Writing—review & editing.

REFERENCES

1. Kim J, Harper A, McCormack V, Sung H, Houssami N, Morgan E, et al. Global patterns and trends in breast cancer incidence and mortality across 185 countries. *Nature medicine*. 2025;31(4):1154-62. doi: 10.1038/s41591-025-03502-3.
2. Michaels E, Worthington RO, Rusiecki J. Breast Cancer: Risk Assessment, Screening, and Primary Prevention. *The Medical clinics of North America*. 2023;107(2):271-84. doi: 10.1016/j.mcna.2022.10.007.
3. Arslan G, Altintoprak KM, Yirgin IK, Atasoy MM, Celik L. Diagnostic accuracy of metastatic axillary lymph nodes in breast MRI. *SpringerPlus*. 2016;5(1):735. doi: 10.1186/s40064-016-2419-7.
4. Bode M, Schrading S, Masoumi A, Morschied S, Schacht S, Dirrichs T, et al. Abbreviated MRI for Comprehensive Regional Lymph Node Staging during Pre-Operative Breast MRI. *Cancers*. 2023;15(6). doi: 10.3390/cancers15061859.
5. Marino MA, Avendano D, Zapata P, Riedl CC, Pinker K. Lymph Node Imaging in Patients with Primary Breast Cancer: Concurrent Diagnostic Tools. *The oncologist*. 2020;25(2):e231-e42. doi: 10.1634/theoncologist.2019-0427.
6. Kwon MR, Ko EY, Han BK, Ko ES, Choi JS, Park KW. Diagnostic performance of abbreviated breast MRI for screening of women with previously treated breast cancer. *Medicine*. 2020;99(16):e19676. doi: 10.1097/MD.00000000000019676.
7. Mohammadzadeh S, Mohebbi A, Moradi Z, Ardkani AA, Mohammadi A, Tavangar SM. Comparing diagnostic performance of PET/CT, MRI, and CT in characterization of cN0 head and neck squamous cell carcinoma: A multicenter study. *Radiography*. 2025;31(2):102902. doi: 10.1016/j.radi.2025.102902.
8. Zeinalkhani F, Kamali Hakim P, Mahdavi Sabet F, Moradi Z, Rahmani Firouzi S, Zeinalkhani H, et al. Direct Comparison of Full Protocol MRI and Modified Non-Contrast MRI in Determination of Cancer Origin in Female Genital Tract Cancers: A Retrospective Study. *Abdominal Radiology*. 2025. doi: 10.1007/s00261-025-05291-2.
9. Kuhl CK, Strobel K, Bieling H, Leutner C, Schild HH, Schrading S. Supplemental Breast MR Imaging Screening of Women with Average Risk of Breast Cancer. *Radiology*. 2017;283(2):361-70. doi: 10.1148/radiol.2016161444.
10. Tang WJ, Chen SY, Hu WK, Li XL, Zheng BJ, Wang ZS, et al. Abbreviated Versus Full-Protocol MRI for Breast Cancer Neoadjuvant Chemotherapy Response Assessment: Diagnostic Performance by General and Breast Radiologists. *AJR American journal of roentgenology*. 2023;220(6):817-25. doi: 10.2214/ajr.22.28686.
11. Cho P, Park CS, Park GE, Kim SH, Kim HS, Oh SJ. Diagnostic Usefulness of Diffusion-Weighted MRI for Axillary Lymph Node Evaluation in Patients with Breast Cancer. *Diagnostics (Basel, Switzerland)*. 2023;13(3). doi: 10.3390/diagnostics13030513.
12. Cohen J. A Coefficient of Agreement for Nominal Scales. *Educational and Psychological Measurement*. 1960;20(1):37-46. doi: 10.1177/00131644600200104.
13. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies--improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. *Annals of oncology : official journal of the European Society for Medical Oncology*. 2015;26(8):1533-46. doi: 10.1093/annonc/mdv221.
14. Lyman GH, Somerfield MR, Bosserman LD, Perkins CL, Weaver DL, Giuliano AE. Sentinel Lymph Node Biopsy for Patients With Early-Stage Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2017;35(5):561-4. doi: 10.1200/jco.2016.71.0947.
15. Gera R, Kasem A, Mokbel K. Can Complete Axillary Node Dissection Be Safely Omitted in Patients with Early Breast Cancer When the Sentinel Node Biopsy Is Positive for Malignancy? An Update for Clinical Practice. *In vivo (Athens, Greece)*. 2018;32(6):1301-7. doi: 10.21873/invivo.11380.
16. Pinheiro DJ, Elias S, Nazário AC. Axillary lymph nodes in breast cancer patients: sonographic evaluation. *Radiologia brasileira*. 2014;47(4):240-4. doi: 10.1590/0100-3984.2013.1689.

17. Chang JM, Leung JWT, Moy L, Ha SM, Moon WK. Axillary Nodal Evaluation in Breast Cancer: State of the Art. *Radiology*. 2020;295(3):500-15. doi: 10.1148/radiol.2020192534.
18. Grimm LJ, Soo MS, Yoon S, Kim C, Ghate SV, Johnson KS. Abbreviated screening protocol for breast MRI: a feasibility study. *Academic radiology*. 2015;22(9):1157-62. doi: 10.1016/j.acra.2015.06.004.
19. Maung ST, Deepan N, Decharatanachart P, Chaiteerakij R. Abbreviated MRI for Hepatocellular Carcinoma Surveillance - A Systematic Review and Meta-analysis. *Academic radiology*. 2024;31(8):3142-56. doi: 10.1016/j.acra.2024.01.028.
20. Pesapane F, Battaglia O, Rotili A, Gnocchi G, D'Ecclesiis O, Bellerba F, et al. Comparative diagnostic efficacy of abbreviated and full protocol breast MRI: a systematic review and a meta-analysis. *The British journal of radiology*. 2024;97(1164):1915-24. doi: 10.1093/bjr/tqae196.
21. Höther AM, Vargas HA, Donati OF. Abbreviated MR Protocols in Prostate MRI. *Life (Basel)* Switzerland). 2022;12(4). doi: 10.3390/life12040552.
22. Zeinalkhani F, Kamali Hakim P, Aghasi M, Mahdavi Sabet F, Mortazavi Ardestani R, Baghban Y, et al. Direct comparison of full protocol MRI and modified non-contrast MRI in staging of cervical cancer: a retrospective study. *Abdominal Radiology*. 2025. doi: 10.1007/s00261-025-05076-7.
23. Mohammadzadeh S, Mohebbi A, Moradi Z, Abdi A, Mohammadi A, Hakim PK, et al. Diagnostic performance of Kaiser score in the evaluation of breast cancer using MRI: A systematic review and meta-analysis. *European journal of radiology*. 2025;186:112055. doi: 10.1016/j.ejrad.2025.112055.
24. Kadioglu ME, Metin Y, Metin NO, Tasci F, Ozdemir O, Kupeli A. The efficacy of abbreviated breast MRI protocols using 1.5 T MRI in the preoperative staging of newly diagnosed breast cancers. *Clinical imaging*. 2023;101:44-9. doi: 10.1016/j.clinimag.2023.05.016.

How to Cite This Article

Zeinalkhani F, Mohammadzadeh S, Mahdavi Sabet F, Kamali Hakim P, Zeinalkhani H, Baban Taher E, et al. Comparative Analysis of Abbreviated and Full Protocol MRI in Detecting Axillary Lymph Node Metastasis in Patients with Known Breast Cancer. Arch Breast Cancer. 2025; 13(1):87-97.

Available from: <https://www.archbreastcancer.com/index.php/abc/article/view/1201>